Xiaoliang Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nature Catalysis, 2019, 2, 889-898.	34.4	234
2	Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2. Applied Catalysis B: Environmental, 2019, 246, 221-231.	20.2	174
3	Methanation over Ni/SiO2: Effect of the catalyst preparation methodologies. International Journal of Hydrogen Energy, 2013, 38, 2283-2291.	7.1	172
4	Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation. Nature Communications, 2019, 10, 2608.	12.8	104
5	A novel 3D porous modified material with cage-like structure: fabrication and its demulsification effect for efficient oil/water separation. Journal of Materials Chemistry A, 2017, 5, 5895-5904.	10.3	97
6	Dielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: Current status and perspective. Catalysis Today, 2015, 256, 29-40.	4.4	78
7	Bimetallic Ni-Co nanoparticles on SiO2 as robust catalyst for CO methanation: Effect of homogeneity of Ni-Co alloy. Applied Catalysis B: Environmental, 2020, 278, 119307.	20.2	58
8	Synthesis of mesoporous and tetragonal zirconia with inherited morphology from metal–organic frameworks. CrystEngComm, 2015, 17, 6426-6433.	2.6	53
9	Improved Effect of Fe on the Stable NiFe/Al ₂ O ₃ Catalyst in Low-Temperature Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2020, 59, 17250-17258.	3.7	53
10	Immobilization of Highly Dispersed Ag Nanoparticles on Carbon Nanotubes Using Electron-Assisted Reduction for Antibacterial Performance. ACS Applied Materials & Interfaces, 2016, 8, 17060-17067.	8.0	48
11	Influence of Acidity of Mesoporous ZSM-5-Supported Pt on Naphthalene Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 1056-1064.	3.7	37
12	Effect of Catalyst Structure on Growth and Reactivity of Carbon Nanofibers over Ni/MgAl ₂ O ₄ . Industrial & Engineering Chemistry Research, 2013, 52, 8182-8188.	3.7	34
13	Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor. Physical Chemistry Chemical Physics, 2013, 15, 12132.	2.8	33
14	Stable Au catalysts for selective hydrogenation of acetylene in ethylene. Applied Catalysis A: General, 2014, 487, 36-44.	4.3	32
15	Effect of SO2 on Co sites for NO-SCR by CH4 over Co-Beta. Catalysis Today, 2011, 175, 12-17.	4.4	29
16	Al2O3 support triggering highly efficient photoreduction of CO2 with H2O on noble-metal-free CdS/Ni9S8/Al2O3. Applied Catalysis B: Environmental, 2019, 240, 174-181.	20.2	28
17	Effect of the catalyst structure on the formation of carbon nanotubes over Ni/MgO catalyst. Diamond and Related Materials, 2013, 31, 50-57.	3.9	27
18	Facile synthesis of highly ordered mesoporous alumina with high thermal and hydrothermal stability using zirconia as promoter. Materials Letters, 2013, 97, 27-30.	2.6	26

XIAOLIANG YAN

#	Article	IF	CITATIONS
19	Gold on carbon and titanium oxides composites: Highly efficient and stable acetylene hydrogenation in large excess of ethylene. Journal of Catalysis, 2016, 344, 194-201.	6.2	26
20	A Ni-based catalyst with enhanced Ni–support interaction for highly efficient CO methanation. Catalysis Science and Technology, 2018, 8, 3474-3483.	4.1	25
21	A systematic study of long-range ordered 3D-SBA-15 materials by electron tomography. New Journal of Chemistry, 2011, 35, 2456.	2.8	24
22	Preparation and antibacterial property of silver decorated carbon microspheres. Applied Surface Science, 2014, 292, 480-487.	6.1	24
23	CO Methanation over Ni/SiO2 Catalyst Prepared by Ammonia Impregnation and Plasma Decomposition. Topics in Catalysis, 2017, 60, 879-889.	2.8	22
24	Influence of the Microstructure of Ni–Co Bimetallic Catalyst on CO Methanation. Industrial & Engineering Chemistry Research, 2020, 59, 1845-1854.	3.7	21
25	Methanation of coke oven gas over Ni-Ce/γ-Al2O3 catalyst using a tubular heat exchange reactor: Pilot-scale test and process optimization. Energy Conversion and Management, 2020, 204, 112302.	9.2	20
26	Facile synthesis of highly ordered mesoporous cobalt–alumina catalysts and their application in liquid phase selective oxidation of styrene. RSC Advances, 2015, 5, 98377-98390.	3.6	19
27	Structural and surface properties of highly ordered mesoporous magnesium-aluminium composite oxides derived from facile synthesis. Materials Chemistry and Physics, 2017, 186, 574-583.	4.0	18
28	Tunable Ag ⁺ ion release from Ag@C for antibacterial and antifouling performances. RSC Advances, 2015, 5, 39384-39391.	3.6	13
29	The next big thing for silicon nanostructures – CO ₂ photocatalysis. Faraday Discussions, 2020, 222, 424-432.	3.2	13
30	Selective Catalytic Reduction of NO in Excess Oxygen by Methane over Mn/ZSM-5 Catalysts. Chinese Journal of Catalysis, 2010, 31, 1107-1114.	14.0	12
31	Facile synthesis of highly ordered mesoporous chromium–alumina catalysts with improved catalytic activity and stability. Journal of Materials Research, 2014, 29, 811-819.	2.6	12
32	Silylated layered double hydroxide nanosheets prepared by a large-scale synthesis method as hosts for intercalation of metal complexes. Applied Catalysis A: General, 2016, 522, 101-108.	4.3	12
33	Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene. Frontiers of Chemical Science and Engineering, 2020, 14, 522-533.	4.4	12
34	Metal nanoparticles encapsulated within SOD zeolite coupling with HZSM-5 for hydrogenative conversion of methylcyclopentane. Fuel, 2021, 291, 120159.	6.4	12
35	Solvothermal-assisted evaporation-induced self-assembly of ordered mesoporous alumina with improved performance. Journal of Colloid and Interface Science, 2018, 529, 432-443.	9.4	10
36	Ordered mesoporous alumina-supported vanadium oxides as an efficient catalyst for ethylbenzene dehydrogenation to styrene with CO2. Catalysis Communications, 2018, 115, 12-16.	3.3	10

XIAOLIANG YAN

#	Article	IF	CITATIONS
37	CO Dissociation on Ni/SiO2: The Formation of Different Carbon Materials. Topics in Catalysis, 2017, 60, 890-897.	2.8	9
38	Facile synthesis of micro-mesoporous alumina-zirconia nanocrystals with tailoring texture. Chemical Physics Letters, 2018, 709, 41-45.	2.6	8
39	Synthesis of novel mesoporous sulfated zirconia nanosheets derived from Zr-based metal–organic frameworks. CrystEngComm, 2020, 22, 44-51.	2.6	8
40	A super-microporous zirconia–alumina nanomaterial with high thermal stability. Materials Letters, 2014, 136, 183-186.	2.6	7
41	Super-microporous solid base MgO-ZrO 2 composite and their application in biodiesel production. Chemical Physics Letters, 2016, 663, 61-65.	2.6	7
42	Dehydrogenation of ethylbenzene with CO2 over porous Co/Al2O3–ZrO2 catalyst. Materials Chemistry and Physics, 2021, 257, 123773.	4.0	7
43	Synthesis of ordered mesoporous Mg Al composite oxide-supported potassium catalysts for biodiesel production. Catalysis Communications, 2018, 116, 76-80.	3.3	6
44	NO-CH4-SCR Over Core-Shell MnH-Zeolite Composites. Applied Sciences (Switzerland), 2019, 9, 1773.	2.5	4
45	Synthesis of ordered macro-mesoporous Mg-Al composite oxides with high thermal stability and mechanical strength. Materials Letters, 2018, 224, 33-36.	2.6	3
46	Precise control of the growth and size of Ni nanoparticles on Al ₂ O ₃ by a MOF-derived strategy. CrystEngComm, 2019, 21, 6709-6718.	2.6	3
47	Oxidative dehydrogenation of ethylbenzene to styrene with CO ₂ over Alâ€MCMâ€41â€supported vanadia catalysts. Applied Organometallic Chemistry, 2020, 34, e5396.	3.5	3
48	Synthesis of composite zeolites composed of SAPO-5 and SAPO-34 and its application in methanol dehydration to light olefins. Journal of Porous Materials, 2021, 28, 1281-1289.	2.6	3
49	A simple approach to the synthesis of Cu _{1.8} S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent. Beilstein Journal of Nanotechnology, 2015, 6, 881-885.	2.8	2
50	Fabrication of super-microporous nanocrystalline zirconia with high thermal stability. Chemical Physics Letters, 2016, 650, 98-101.	2.6	2
51	Template effect of single/double-chain quaternary ammonium salts on the formation of mesoporous ZrO 2 nanomaterials. Ceramics International, 2017, 43, 7033-7039.	4.8	2
52	Flash Solid–Solid Synthesis of Silicon Oxide Nanorods. Small, 2020, 16, 2001435.	10.0	2
53	Synthesis of Ordered Mesoporous Zr-Al Composite Oxides with Excellent Structural and Textural Properties and Extremely High Stability. Materials, 2020, 13, 3036.	2.9	1
54	Enantioselectivity Enhanced on LDH Layers in Ruthenium Catalyzed Asymmetric Hydrogenation of Acetophenone. ChemistrySelect, 2020, 5, 4040-4045.	1.5	1

#	Article	IF	CITATIONS
55	Immobilization of nickel ions by the confinement of surface aluminate spinel at low temperature. Journal of Solid State Chemistry, 2021, 304, 122557.	2.9	1
56	Ni catalysts from laboratory investigations to chemical industry. Catalysis, 2020, , 24-43.	1.0	0