Guang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5679032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The fracture of two-layer leaf spring: Experiments and simulation. Engineering Failure Analysis, 2022, 133, 105971.	1.8	4
2	The wear resistance of Al–Si–Re alloys for electrical contact applications. International Journal of Modern Physics B, 2022, 36, .	1.0	1
3	Hydrogen adsorption in phase and grain boundaries of pearlitic steels and its effects on tensile strength. MRS Advances, 2022, 7, 383-387.	0.5	3
4	Indentation of piezoelectric micro- and nanostructures. International Journal of Modern Physics B, 2022, 36, .	1.0	1
5	Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 13388-13401.	5.2	43
6	Lotusâ€Rootâ€Like Carbon Fibers Embedded with Ni–Co Nanoparticles for Dendriteâ€Free Lithium Metal Anodes. Advanced Materials, 2021, 33, e2100608.	11.1	99
7	Polymer Zwitterion-Based Artificial Interphase Layers for Stable Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 57489-57496.	4.0	26
8	Cu–Sn–Zn nanocomposite coatings prepared by TiO2 sol-enhanced electrodeposition. Journal of Applied Electrochemistry, 2020, 50, 875-885.	1.5	8
9	Microstructure and properties of sol-enhanced Co-P-TiO2 nano-composite coatings. Journal of Alloys and Compounds, 2019, 792, 617-625.	2.8	32
10	Microstructure and properties of Cu-Sn-Zn-TiO2 nano-composite coatings on mild steel. Surface and Coatings Technology, 2018, 350, 801-806.	2.2	33
11	Influence of Bi addition on the property of Ag-Bi nano-composite coatings. Surface and Coatings Technology, 2018, 349, 217-223.	2.2	10
12	Effect of second phase particles and stringers on microstructures after rolling and recrystallization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 41-52.	2.6	26
13	Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths. Jom, 2017, 69, 1046-1051.	0.9	7
14	Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties. Surface and Coatings Technology, 2017, 310, 43-50.	2.2	38
15	Computational material design for Q&P steels with plastic instability theory. Materials and Design, 2017, 132, 526-538.	3.3	11
16	Predicting grid-size-dependent fracture strains of DP980 with a microstructure-based post-necking model. International Journal of Fracture, 2017, 207, 211-227.	1.1	12
17	Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings. Materials, 2017, 10, 932.	1.3	10
18	Quantifying the effects of tempering on individual phase properties of DP980 steel with nanoindentation. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 240-249.	2.6	55

GUANG CHENG

#	Article	IF	CITATIONS
19	Quantifying Grain Level Stress-Strain Behavior for AM40 via Instrumented Microindentation. MRS Advances, 2016, 1, 761-772.	0.5	11
20	Determining individual phase properties in a multi-phase Q&P steel using multi-scale indentation tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 652, 384-395.	2.6	83
21	Nanoindentation response of piezoelectric nano-islands. Applied Physics Letters, 2014, 105, .	1.5	12
22	Effect of electric fields on the nanoindentation response of piezoelectric materials. Scripta Materialia, 2013, 69, 682-685.	2.6	4
23	Correlation between nanomechanical and piezoelectric properties of thin films: An experimental and finite element study. Materials Letters, 2013, 90, 148-151.	1.3	18
24	Dominant factors influencing the nanoindentation response of piezoelectric materials: a case study in relaxor ferroelectrics. Philosophical Magazine Letters, 2013, 93, 116-128.	0.5	11
25	Nanoindentation response of anisotropic piezoelectric materials. Philosophical Magazine Letters, 2012, 92, 278-287.	0.5	21
26	Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution. SAE International Journal of Materials and Manufacturing, 0, 9, 361-367.	0.3	6
27	Application of Nano-Indentation Test in Estimating Constituent Phase Properties for Microstructure-Based Modeling of Multiphase Steels. SAE International Journal of Engines, 0, 10, 405-412.	0.4	5
28	The fatigue fracture of mounting bracket: A microstructure characterization. International Journal of Modern Physics B, 0, , .	1.0	0