Margaret A Scull

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5678931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling Innate Antiviral Immunity in Physiological Context. Journal of Molecular Biology, 2022, 434, 167374.	2.0	4
2	Rhinovirus C replication is associated with the endoplasmic reticulum and triggers cytopathic effects in an in vitro model of human airway epithelium. PLoS Pathogens, 2022, 18, e1010159.	2.1	8
3	Influenza A virus diffusion through mucus gel networks. Communications Biology, 2022, 5, 249.	2.0	13
4	Membrane-Tethered Mucin 1 Is Stimulated by Interferon and Virus Infection in Multiple Cell Types and Inhibits Influenza A Virus Infection in Human Airway Epithelium. MBio, 2022, 13, .	1.8	10
5	Immunofluorescenceâ€Mediated Detection of Respiratory Virus Infections in Human Airway Epithelial Cultures. Current Protocols, 2022, 2, .	1.3	3
6	Modeling Airway Dysfunction in Asthma Using Synthetic Mucus Biomaterials. ACS Biomaterials Science and Engineering, 2021, 7, 2723-2733.	2.6	24
7	Leveraging 3D Model Systems to Understand Viral Interactions with the Respiratory Mucosa. Viruses, 2020, 12, 1425.	1.5	18
8	Green fluorescent proteinâ€ŧagged apolipoprotein E: A useful marker for the study of hepatic lipoprotein egress. Traffic, 2017, 18, 192-204.	1.3	9
9	Differential Regulation of Lipoprotein and Hepatitis C Virus Secretion by Rab1b. Cell Reports, 2017, 21, 431-441.	2.9	28
10	Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread. Cell Host and Microbe, 2017, 22, 460-470.e5.	5.1	52
11	Analysis of Hepatitis C Virus Particle Heterogeneity in Immunodeficient Human Liver Chimeric fah-/- Mice. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 405-417.	2.3	7
12	In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Science Translational Medicine, 2017, 9, .	5.8	133
13	miRNA independent hepacivirus variants suggest a strong evolutionary pressure to maintain miR-122 dependence. PLoS Pathogens, 2017, 13, e1006694.	2.1	25
14	Screening of the Pan-African Natural Product Library Identifies Ixoratannin A-2 and Boldine as Novel HIV-1 Inhibitors. PLoS ONE, 2015, 10, e0121099.	1.1	38
15	A Serpin Shapes the Extracellular Environment to Prevent Influenza A Virus Maturation. Cell, 2015, 160, 631-643.	13.5	137
16	Hepatitis C virus infects rhesus macaque hepatocytes and simianized mice. Hepatology, 2015, 62, 57-67.	3.6	22
17	Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nature Protocols, 2015, 10, 2027-2053.	5.5	119
18	The N-terminal Helical Region of the Hepatitis C Virus p7 Ion Channel Protein Is Critical for Infectious Virus Production. PLoS Pathogens, 2015, 11, e1005297.	2.1	18

MARGARET A SCULL

#	Article	IF	CITATIONS
19	New Methods in Tissue Engineering: Improved Models for Viral Infection. Annual Review of Virology, 2014, 1, 475-499.	3.0	23
20	Recapitulation of the hepatitis C virus life-cycle in engineered murine cell lines. Virology, 2013, 444, 1-11.	1.1	64
21	Human parainfluenza virus serotypes differ in their kinetics of replication and cytokine secretion in human tracheobronchial airway epithelium. Virology, 2012, 433, 320-328.	1.1	21
22	Exiting from uncharted territory: Hepatitis C virus assembles in mouse cell lines. Hepatology, 2012, 55, 645-648.	3.6	2
23	NLRX1 Protein Attenuates Inflammatory Responses to Infection by Interfering with the RIG-I-MAVS and TRAF6-NF-ήB Signaling Pathways. Immunity, 2011, 34, 854-865.	6.6	323
24	The Conundrum of Relapse in STAT-C Therapy: Does HCV Play the Red Queen or Rip Van Winkle?. Seminars in Liver Disease, 2011, 31, 410-419.	1.8	8
25	Lack of transmission of a human influenza virus with avian receptor specificity between ferrets is not due to decreased virus shedding but rather a lower infectivity in vivo. Journal of General Virology, 2011, 92, 1822-1831.	1.3	45
26	Human parainfluenza virus type 2 V protein inhibits interferon production and signaling and is required for replication in non-human primates. Virology, 2010, 397, 285-298.	1.1	16
27	A big role for small RNAs in influenza virus replication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11153-11154.	3.3	9
28	Growth restriction of an experimental live attenuated human parainfluenza virus type 2 vaccine in human ciliated airway epithelium in vitro parallels attenuation in African green monkeys. Vaccine, 2010, 28, 2788-2798.	1.7	14
29	Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways. PLoS Pathogens, 2009, 5, e1000424.	2.1	68
30	The NLRP3 Inflammasome Mediates In Vivo Innate Immunity to Influenza A Virus through Recognition of Viral RNA. Immunity, 2009, 30, 556-565.	6.6	943
31	Characterization of exosomeâ€like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB Journal, 2009, 23, 1858-1868.	0.2	301
32	Mutations in H5N1 Influenza Virus Hemagglutinin that Confer Binding to Human Tracheal Airway Epithelium. PLoS ONE, 2009, 4, e7836.	1.1	60
33	Role of Interferon in the Replication of Human Parainfluenza Virus Type 1 Wild Type and Mutant Viruses in Human Ciliated Airway Epithelium. Journal of Virology, 2008, 82, 8059-8070.	1.5	28
34	Correlates of Preserved CD4+ T Cell Homeostasis during Natural, Nonpathogenic Simian Immunodeficiency Virus Infection of Sooty Mangabeys: Implications for AIDS Pathogenesis. Journal of Immunology, 2007, 178, 1680-1691.	0.4	110
35	CD25+CD4+ Regulatory T Cells from the Peripheral Blood of Asymptomatic HIV-infected Individuals Regulate CD4+ and CD8+ HIV-specific T Cell Immune Responses In Vitro and Are Associated with Favorable Clinical Markers of Disease Status. Journal of Experimental Medicine, 2004, 200, 331-343.	4.2	401