Dai Kitamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5678760/publications.pdf

Version: 2024-02-01

26626 64791 8,265 189 56 79 h-index citations g-index papers 197 197 197 3973 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Functions and potential applications of glycolipid biosurfactants â€" from energy-saving materials to gene delivery carriers â€". Journal of Bioscience and Bioengineering, 2002, 94, 187-201.	2.2	407
2	Self-assembling properties of glycolipid biosurfactants and their potential applications. Current Opinion in Colloid and Interface Science, 2009, 14, 315-328.	7.4	246
3	Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. Journal of Biotechnology, 1993, 29, 91-96.	3.8	228
4	Microbial Extracellular Glycolipid Induction of Differentiation and Inhibition of the Protein Kinase C Activity of Human Promyelocytic Leukemia Cell Line HL60. Bioscience, Biotechnology and Biochemistry, 1997, 61, 609-614.	1.3	146
5	Production of New Types of Sophorolipids by <i>Candida batistae</i> . Journal of Oleo Science, 2008, 57, 359-369.	1.4	134
6	Title is missing!. Biotechnology Letters, 2001, 23, 1709-1714.	2.2	128
7	Functions and Potential Applications of Glycolipid Biosurfactants — from Energy-Saving Materials to Gene Delivery Carriers —. Journal of Bioscience and Bioengineering, 2002, 94, 187-201.	2.2	121
8	Coacervate Formation from Natural Glycolipid:Â One Acetyl Group on the Headgroup Triggers Coacervate-to-Vesicle Transition. Journal of the American Chemical Society, 2004, 126, 10804-10805.	13.7	115
9	Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Applied Microbiology and Biotechnology, 2006, 73, 305-313.	3.6	115
10	Characterization of the genusPseudozymaby the formation of glycolipid biosurfactants, mannosylerythritol lipids. FEMS Yeast Research, 2007, 7, 286-292.	2.3	115
11	Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids. Lipids, 1997, 32, 263-271.	1.7	112
12	Naturally Engineered Glycolipid Biosurfactants Leading to Distinctive Self-Assembled Structures. Chemistry - A European Journal, 2006, 12, 2434-2440.	3.3	110
13	Aqueous-Phase Behavior of Natural Glycolipid Biosurfactant Mannosylerythritol Lipid A:Â Sponge, Cubic, and Lamellar Phases. Langmuir, 2007, 23, 1659-1663.	3.5	108
14	Microbial Production of Glyceric Acid, an Organic Acid That Can Be Mass Produced from Glycerol. Applied and Environmental Microbiology, 2009, 75, 7760-7766.	3.1	108
15	Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica Agricultural and Biological Chemistry, 1990, 54, 31-36.	0.3	103
16	Glycolipid Biosurfactants, Mannosylerythritol Lipids, Show Antioxidant and Protective Effects against H2O2-Induced Oxidative Stress in Cultured Human Skin Fibroblasts. Journal of Oleo Science, 2012, 61, 457-464.	1.4	102
17	Production of mannosylerythritol lipids and their application in cosmetics. Applied Microbiology and Biotechnology, 2013, 97, 4691-4700.	3.6	99
18	Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Applied Microbiology and Biotechnology, 2007, 75, 521-531.	3.6	97

#	Article	IF	CITATIONS
19	Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. Journal of Bioscience and Bioengineering, 2007, 104, 78-81.	2.2	93
20	Improvement of ethanol selectivity of silicalite membrane in pervaporation by silicone rubber coating. Journal of Membrane Science, 2002, 210, 433-437.	8.2	92
21	Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Applied Microbiology and Biotechnology, 2007, 76, 801-810.	3.6	88
22	Biosurfactant MEL-A dramatically increases gene transfection via membrane fusion. Journal of Controlled Release, 2004, 94, 423-431.	9.9	86
23	A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydrate Research, 2008, 343, 555-560.	2.3	86
24	Extracellular Accumulation of Mannosylerythritol Lipids by a Strain of <i>Candida antarctica </i> Agricultural and Biological Chemistry, 1990, 54, 31-36.	0.3	84
25	Efficient Preparation of Liposomes Encapsulating Food Materials Using Lecithins by a Mechanochemical Method. Journal of Oleo Science, 2007, 56, 35-42.	1.4	83
26	Improved crown ether-based chiral stationary phase. Journal of Chromatography A, 1992, 625, 101-108.	3.7	81
27	Mannosylerythritol Lipids: Production and Applications. Journal of Oleo Science, 2015, 64, 133-141.	1.4	81
28	Supported liquid membranes for enantioselective transport of amino acid mediated by chiral crown ether - effect of membrane solvent on transport rate and membrane stability. Journal of Membrane Science, 1993, 84, 241-248.	8.2	79
29	Asymmetric catalysis by a new type of chiral binaphthol-titanium complex. Tetrahedron Letters, 1995, 36, 1861-1864.	1.4	78
30	Biosurfactants of MEL-A Increase Gene Transfection Mediated by Cationic Liposomes. Biochemical and Biophysical Research Communications, 2001, 289, 57-61.	2.1	78
31	Production of mannosylerythritol lipids by Candida antarctica from vegetable oils Agricultural and Biological Chemistry, 1990, 54, 37-40.	0.3	77
32	Glycolipid Biosurfactants, Mannosylerythritol Lipids, Repair the Damaged Hair. Journal of Oleo Science, 2010, 59, 267-272.	1.4	73
33	Preparation of asymmetric polyimide membrane for water/ethanol separation in pervaporation by the phase inversion process. Journal of Membrane Science, 1994, 86, 231-240.	8.2	72
34	Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Applied Microbiology and Biotechnology, 2007, 74, 307-315.	3.6	71
35	Title is missing!. Biotechnology Letters, 1998, 20, 813-818.	2.2	70
36	Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. Journal of Bioscience and Bioengineering, 2008, 105, 493-502.	2.2	70

3

#	Article	lF	CITATIONS
37	Biotechnological production of d-glyceric acid and its application. Applied Microbiology and Biotechnology, 2009, 84, 445-452.	3.6	70
38	Preparation of polyacrylonitrile ultrafiltration membranes for wastewater treatment. Desalination, 2002, 144, 53-59.	8.2	68
39	Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Applied Microbiology and Biotechnology, 2008, 78, 37-46.	3.6	65
40	Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnology and Applied Biochemistry, 2009, 53, 39.	3.1	65
41	The Moisturizing Effects of Glycolipid Biosurfactants, Mannosylerythritol Lipids, on Human Skin. Journal of Oleo Science, 2012, 61, 407-412.	1.4	65
42	Genome Sequence of the Basidiomycetous Yeast <i>Pseudozyma antarctica </i> T-34, a Producer of the Glycolipid Biosurfactants Mannosylerythritol Lipids. Genome Announcements, 2013, 1, e0006413.	0.8	65
43	Structural Characterization and Surface-Active Properties of a Succinoyl Trehalose Lipid Produced by Rhodococcus sp. SD-74. Journal of Oleo Science, 2009, 58, 97-102.	1.4	64
44	Concentration of fermented ethanol by pervaporation using silicalite membranes coated with silicone rubber. Desalination, 2002, 149, 49-54.	8.2	63
45	A Yeast Glycolipid Biosurfactant, Mannosylerythritol Lipid, Shows Potential Moisturizing Activity toward Cultured Human Skin Cells: The Recovery Effect of MEL-A on the SDS-damaged Human Skin Cells. Journal of Oleo Science, 2009, 58, 639-642.	1.4	63
46	Title is missing!. Biotechnology Letters, 1997, 11, 921-924.	0.5	62
47	Formation of giant vesicles from diacylmannosylerythritols, and their binding to concanavalin A. Chemical Communications, 2000, , 861-862.	4.1	62
48	Characterization of New Types of Mannosylerythritol Lipids as Biosurfactants Produced from Soybean Oil by a Basidiomycetous Yeast, Pseudozyma shanxiensis. Journal of Oleo Science, 2007, 56, 435-442.	1.4	62
49	Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts. Biotechnology Letters, 2007, 29, 1111-1118.	2.2	62
50	Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Applied Microbiology and Biotechnology, 2009, 83, 1017-1025.	3.6	62
51	Drastic improvement of bioethanol recovery using a pervaporation separation technique employing a silicone rubber-coated silicalite membrane. Journal of Chemical Technology and Biotechnology, 2003, 78, 1006-1010.	3.2	60
52	A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system. Biotechnology Letters, 2007, 29, 473-480.	2.2	60
53	Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids and Surfaces B: Biointerfaces, 2008, 65, 106-112.	5.0	60
54	Production of Mannosylerythritol Lipids by <i>Candida antarctica</i> from Vegetable Oils. Agricultural and Biological Chemistry, 1990, 54, 37-40.	0.3	59

#	Article	lF	Citations
55	Separation performance of polyimide composite membrane prepared by dip coating process. Journal of Membrane Science, 2001, 188, 165-172.	8.2	59
56	Production of Sophorolipid Glycolipid Biosurfactants from Sugarcane Molasses Using <i>Starmerella bombicola</i> NBRC 10243. Journal of Oleo Science, 2011, 60, 267-273.	1.4	59
57	Effects of preparation condition of photoinduced graft filling-polymerized membranes on pervaporation performance. Journal of Membrane Science, 2000, 179, 69-77.	8.2	57
58	Biotransformation of glycerol to d-glyceric acid by Acetobacter tropicalis. Applied Microbiology and Biotechnology, 2009, 81, 1033-1039.	3.6	56
59	Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida antarctica. Biotechnology Letters, 1992, 14, 305-310.	2.2	55
60	Remarkable Antiagglomeration Effect of a Yeast Biosurfactant, Diacylmannosylerythritol, on Ice-Water Slurry for Cold Thermal Storage. Biotechnology Progress, 2001, 17, 362-365.	2.6	54
61	Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance. Colloids and Surfaces B: Biointerfaces, 2007, 58, 165-171.	5.0	54
62	Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids. Journal of Bioscience and Bioengineering, 2011, 112, 137-144.	2.2	51
63	Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase. Colloids and Surfaces B: Biointerfaces, 2005, 43, 115-121.	5.0	49
64	Identification of Pseudozyma graminicola CBS 10092 as a Producer of Glycolipid Biosurfactants, Mannosylerythritol Lipids. Journal of Oleo Science, 2008, 57, 123-131.	1.4	49
65	Production of Glyceric Acid by <i>Gluconobacter</i> Sp. NBRC3259 Using Raw Glycerol. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1799-1805.	1.3	49
66	Liposomes Encapsulating Aloe vera Leaf Gel Extract Significantly Enhance Proliferation and Collagen Synthesis in Human Skin Cell Lines. Journal of Oleo Science, 2009, 58, 643-650.	1.4	49
67	Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B. Applied Microbiology and Biotechnology, 2010, 88, 679-688.	3.6	49
68	Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. Journal of Bioscience and Bioengineering, 2011, 111, 702-705.	2.2	49
69	Mannosylerythritol lipids, yeast glycolipid biosurfactants, are potential affinity ligand materials for human immunoglobulin G. Journal of Biomedical Materials Research Part B, 2003, 65A, 379-385.	3.1	46
70	Separation of Ethanol/Water Mixture by Silicalite Membrane. Chemistry Letters, 1992, 21, 2413-2414.	1.3	45
71	NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection. Journal of Controlled Release, 2007, 123, 247-253.	9.9	45
72	Genome and Transcriptome Analysis of the Basidiomycetous Yeast Pseudozyma antarctica Producing Extracellular Glycolipids, Mannosylerythritol Lipids. PLoS ONE, 2014, 9, e86490.	2.5	45

#	Article	IF	CITATIONS
73	Production of Glycolipid Biosurfactants, Cellobiose Lipids, by <i>Cryptococcus humicola</i> JCM 1461 and Their Interfacial Properties. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1597-1599.	1.3	44
74	Production and Characterization of a Glycolipid Biosurfactant, Mannosylerythritol Lipid B, from Sugarcane Juice by <i>Ustilago scitaminea </i> NBRC 32730. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1371-1376.	1.3	42
75	Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior. Carbohydrate Research, 2011, 346, 266-271.	2.3	42
76	Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T. Applied Microbiology and Biotechnology, 2012, 96, 931-938.	3 . 6	42
77	Efficient Production of Acid-Form Sophorolipids from Waste Glycerol and Fatty Acid Methyl Esters by <i>Candida floricola</i> . Journal of Oleo Science, 2018, 67, 489-496.	1.4	42
78	Efficient Production of Di- and Tri-acylated Mannosylerythritol Lipids as Glycolipid Biosurfactants by Pseudozyma parantarctica JCM 11752T. Journal of Oleo Science, 2008, 57, 557-565.	1.4	40
79	Monolayers assembled from a glycolipid biosurfactant from Pseudozyma (Candida) antarctica serve as a high-affinity ligand system for immunoglobulin G and M. Biotechnology Letters, 2007, 29, 865-870.	2.2	39
80	Preparation and pervaporation performance of polyimide composite membrane by vapor deposition and polymerization (VDP). Journal of Membrane Science, 1997, 136, 121-126.	8.2	38
81	Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, <i>Pseudozyma aphidis</i> and <i>Pseudozyma hubeiensis</i> . FEMS Yeast Research, 2013, 13, 44-49.	2.3	38
82	Phase behavior of ternary mannosylerythritol lipid/water/oil systems. Colloids and Surfaces B: Biointerfaces, 2009, 68, 207-212.	5.0	37
83	Production of Glycolipid Biosurfactants, Mannosylerythritol Lipids, by a Smut Fungus, <i>Ustilago scitaminea </i> NBRC 32730. Bioscience, Biotechnology and Biochemistry, 2009, 73, 788-792.	1.3	37
84	Emergence of nuclear heparanase induces differentiation of human mammary cancer cells. Biochemical and Biophysical Research Communications, 2005, 331, 175-180.	2.1	36
85	Title is missing!. Biotechnology Letters, 1999, 21, 1037-1041.	2.2	34
86	Preparation of Tubular Silicalite Membranes by Hydrothermal Synthesis with Electrophoretic Deposition as a Seeding Technique. Journal of the American Ceramic Society, 2006, 89, 124-130.	3.8	34
87	A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants. Carbohydrate Research, 2008, 343, 2947-2955.	2.3	34
88	Enzymatic Conversion of Diacetylated Sophoroselipid into Acetylated Glucoselipid: Surface-Active Properties of Novel Bolaform Biosurfactants. Journal of Oleo Science, 2010, 59, 495-501.	1.4	33
89	Preparation of polyimide composite membranes grafted by electron beam irradiation. Journal of Membrane Science, 2004, 232, 93-98.	8.2	32
90	The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration. Carbohydrate Research, 2012, 351, 81-86.	2.3	32

#	Article	lF	Citations
91	Intracellular accumulation of mannosylerythritol lipids as storage materials by Candida antarctica. Applied Microbiology and Biotechnology, 1992, 36, 768.	3.6	31
92	Disruption of the Membrane-Bound Alcohol Dehydrogenase-Encoding Gene Improved Glycerol Use and Dihydroxyacetone Productivity in <i>Gluconobacter oxydans</i> Bioscience, Biotechnology and Biochemistry, 2010, 74, 1391-1395.	1.3	31
93	Characterization and Bioavailability of Liposomes Containing a Ukon Extract. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1199-1205.	1.3	29
94	Activation of Fibroblast and Papilla Cells by Glycolipid Biosurfactants, Mannosylerythritol Lipids Journal of Oleo Science, 2010, 59, 451-455.	1.4	29
95	Electrophoretic Deposition Mechanism of YSZ/n-Propanol Suspension. Journal of the Electrochemical Society, 2005, 152, J16.	2.9	28
96	Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea. Journal of Bioscience and Bioengineering, 2010, 110, 169-175.	2.2	28
97	Production of a Novel Mannosylerythritol Lipid Containing a Hydroxy Fatty Acid from Castor Oil by Pseudozyma tsukubaensis. Journal of Oleo Science, 2013, 62, 381-389.	1.4	28
98	Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi. Journal of Applied Microbiology, 2015, 119, 215-224.	3.1	28
99	Identification of the gene <i>PaEMT1</i> for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast <i>Pseudozyma antarctica</i> Yeast, 2010, 27, 905-917.	1.7	27
100	Biosurfactant mannosyl-erythritol lipid inhibits secretion of inflammatory mediators from RBL-2H3 cells. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 1302-1308.	2.4	26
101	Production of Sophorolipids from Non-edible Jatropha Oil by Stamerella bombicola NBRC 10243 and Evaluation of their Interfacial Properties. Journal of Oleo Science, 2013, 62, 857-864.	1.4	26
102	Production of d-arabitol from raw glycerol by Candida quercitrusa. Applied Microbiology and Biotechnology, 2014, 98, 2947-2953.	3.6	26
103	<i>Candida krusei</i> produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation. FEMS Yeast Research, 2008, 8, 706-714.	2.3	25
104	Identification of Ustilago cynodontis as a New Producer of Glycolipid Biosurfactants, Mannosylerythritol Lipids, Based on Ribosomal DNA Sequences. Journal of Oleo Science, 2008, 57, 549-556.	1.4	25
105	Production of Glycolipid Biosurfactants, Mannosylerythritol Lipids, Using Sucrose by Fungal and Yeast Strains, and Their Interfacial Properties. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2352-2355.	1.3	25
106	Draft Genome Sequence of the Yeast <i>Pseudozyma antarctica</i> Type Strain JCM10317, a Producer of the Glycolipid Biosurfactants, Mannosylerythritol Lipids. Genome Announcements, 2014, 2, .	0.8	25
107	Bacterial production of short-chain organic acids and trehalose from levulinic acid: A potential cellulose-derived building block as a feedstock for microbial production. Bioresource Technology, 2015, 177, 381-386.	9.6	25
108	Fatty-acid Metabolism of Mannosylerythritol Lipids as Biosurfactants Produced by Candida antarctica. Journal of Japan Oil Chemists Society, 1993, 42, 346-358.	0.1	24

#	Article	IF	Citations
109	Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G. BMC Biotechnology, 2001, 1, 5.	3.3	24
110	Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast,Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids. Yeast, 2006, 23, 661-671.	1.7	24
111	Formation of W/O Microemulsion Based on Natural Glycolipid Biosurfactant, Mannosylerythritol Lipid-A. Journal of Oleo Science, 2008, 57, 55-59.	1.4	24
112	Surfactant-like Properties of an Amphiphilic \hat{l}_{\pm} -Helical Peptide Leading to Lipid Nanodisc Formation. Langmuir, 2014, 30, 4752-4759.	3.5	24
113	The ratio of unsaturated fatty acids in biosurfactants affects the efficiency of gene transfection. International Journal of Pharmaceutics, 2010, 398, 225-230.	5.2	23
114	Deep-sea Rhodococcus sp. BS-15, Lacking the Phytopathogenic fas Genes, Produces a Novel Glucotriose Lipid Biosurfactant. Marine Biotechnology, 2014, 16, 484-493.	2.4	23
115	Production of mannitol from raw glycerol by Candida azyma. Journal of Bioscience and Bioengineering, 2014, 117, 725-729.	2.2	22
116	Selective Production of Acid-form Sophorolipids from Glycerol by <i>Candida floricola</i> . Journal of Oleo Science, 2017, 66, 1365-1373.	1.4	22
117	Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes. Biochemical and Biophysical Research Communications, 2011, 414, 635-640.	2.1	21
118	Stabilization of bioethanol recovery with silicone rubber-coated ethanol-permselective silicalite membranes by controlling the pH of acidic feed solution. Journal of Chemical Technology and Biotechnology, 2005, 80, 381-387.	3.2	20
119	Convenient Transformation of Anamorphic Basidiomycetous Yeasts Belonging to Genus Pseudozyma Induced by Electroporation. Journal of Bioscience and Bioengineering, 2007, 104, 517-520.	2.2	20
120	Non-ionic Surfactant Modified Cationic Liposomes Mediated Gene Transfection in Vitro and in the Mouse Lung. Biological and Pharmaceutical Bulletin, 2009, 32, 311-315.	1.4	20
121	Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces. Applied Microbiology and Biotechnology, 2014, 98, 6419-6429.	3.6	20
122	Preparation of photo-induced graft filling polymerized membranes for pervaporation using polyimide with benzophenone structure. Journal of Membrane Science, 2002, 203, 191-199.	8.2	19
123	Reliable production of highly concentrated bioethanol by a conjunction of pervaporation using a silicone rubber sheet-covered silicalite membrane with adsorption process. Journal of Chemical Technology and Biotechnology, 2004, 79, 896-901.	3.2	19
124	Application of electrodialysis to glycerate recovery from a glycerol containing model solution and culture broth. Journal of Bioscience and Bioengineering, 2009, 107, 425-428.	2.2	19
125	Application of Yeast Glycolipid Biosurfactant, Mannosylerythritol Lipid, as Agrospreaders. Journal of Oleo Science, 2015, 64, 689-695.	1.4	19
126	Bioprocessing of Glycerol into Glyceric Acid for Use in Bioplastic Monomer. Journal of Oleo Science, 2011, 60, 369-373.	1.4	18

#	Article	IF	CITATIONS
127	Packing Density of Glycolipid Biosurfactant Monolayers Give a Significant Effect on Their Binding Affinity Toward Immunoglobulin G. Journal of Oleo Science, 2008, 57, 415-422.	1.4	17
128	Use of a <i>Gluconobacter frateurii</i> Mutant to Prevent Dihydroxyacetone Accumulation during Glyceric Acid Production from Glycerol. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2330-2332.	1.3	17
129	Synthesis and Interfacial Properties of Monoacyl Glyceric Acids as a New Class of Green Surfactants. Journal of Oleo Science, 2012, 61, 343-348.	1.4	17
130	Spontaneous Vesicle Formation from Sodium Salt of Acidic Sophorolipid and Its Application as a Skin Penetration Enhancer. Journal of Oleo Science, 2014, 63, 141-147.	1.4	17
131	Selective encapsulation of cesium ions using the cyclic peptide moiety of surfactin: Highly efficient removal based on an aqueous giant micellar system. Colloids and Surfaces B: Biointerfaces, 2015, 134, 59-64.	5.0	17
132	Low Molecular Weight Gelators Based on Biosurfactants, Cellobiose Lipids by Cryptococcus humicola. Journal of Oleo Science, 2012, 61, 659-664.	1.4	16
133	Biosurfactant-producing yeasts widely inhabit various vegetables and fruits. Bioscience, Biotechnology and Biochemistry, 2014, 78, 516-523.	1.3	16
134	Aqueous Gel Formation from Sodium Salts of Cellobiose Lipids. Journal of Oleo Science, 2014, 63, 1005-1010.	1.4	16
135	Isolation and Screening of Glycolipid Biosurfactant Producers from Sugarcane. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1788-1791.	1.3	15
136	Interfacial and Emulsifying Properties of Soybean Peptides with Different Degrees of Hydrolysis. Journal of Oleo Science, 2015, 64, 183-189.	1.4	15
137	A putative transporter gene PtMMF1-deleted strain produces mono-acylated mannosylerythritol lipids in Pseudozyma tsukubaensis. Applied Microbiology and Biotechnology, 2020, 104, 10105-10117.	3.6	15
138	Effect of cerulenin on the production of mannosyl-erythritol lipids as biosurfactants by Candida antarctica. Biotechnology Letters, 1995, 17, 25-30.	2.2	14
139	Two-stage electrodialytic concentration of glyceric acid from fermentation broth. Journal of Bioscience and Bioengineering, 2010, 110, 690-695.	2.2	14
140	Synthesis and Evaluation of Dioleoyl Glyceric Acids Showing Antitrypsin Activity. Journal of Oleo Science, 2011, 60, 327-331.	1.4	14
141	Accelerated ethanol fermentation by Saccharomyces cerevisiae with addition of activated carbon. Biotechnology Letters, 2000, 22, 1661-1665.	2.2	13
142	Processing of ethanol fermentation broths by <i>Candida krusei</i> to separate bioethanol by pervaporation using silicone rubberâ€coated silicalite membranes. Journal of Chemical Technology and Biotechnology, 2009, 84, 1172-1177.	3.2	13
143	Molecular dynamics simulations of adsorption of hydrophobic 1,2,4-trichlorobenzene (TCB) on hydrophilic TiO2 in surfactant emulsions and experimental process efficiencies of photo-degradation and -dechlorination. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 141-146.	3.9	13
144	Synergistic effect of a biosurfactant and protamine on gene transfection efficiency. European Journal of Pharmaceutical Sciences, 2013, 49, 1-9.	4.0	13

#	Article	IF	CITATIONS
145	Chemical mutagenesis of Gluconobacter frateurii to construct methanol-resistant mutants showing glyceric acid production from methanol-containing glycerol. Journal of Bioscience and Bioengineering, 2014, 117, 197-199.	2.2	13
146	Preparation of the silicalite membranes using a seeding technique under various hydrothermal conditions. Desalination, 2002, 144, 47-52.	8.2	12
147	Interdigitated Lamella and Bicontinuous Cubic Phases Formation from Natural Cyclic Surfactin and Its Linear Derivative. Journal of Oleo Science, 2013, 62, 499-503.	1.4	12
148	Characterization of Mannosylerythritol Lipids Containing Hexadecatetraenoic Acid Produced from Cuttlefish Oil by Pseudozyma churashimaensis OK96. Journal of Oleo Science, 2013, 62, 319-327.	1.4	12
149	Selective formation of mannosyl-l-arabitol lipid by Pseudozyma tsukubaensis JCM16987. Applied Microbiology and Biotechnology, 2015, 99, 5833-5841.	3.6	12
150	Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains. Applied Microbiology and Biotechnology, 2016, 100, 1733-1741.	3 . 6	12
151	Preparation of Silicalite Pervaporation Membrane With High Ethanol Permselectivity Membrane, 1998, 23, 259-265.	0.0	12
152	Change in product selectivity during the production of glyceric acid from glycerol by Gluconobacter strains in the presence of methanol. AMB Express, 2013, 3, 20.	3.0	11
153	Minimum Amino Acid Residues of an α-Helical Peptide Leading to Lipid Nanodisc Formation. Journal of Oleo Science, 2014, 63, 1203-1208.	1.4	11
154	<i>In vitro</i> evaluation of glyceric acid and its glucosyl derivative, α-glucosylglyceric acid, as cell proliferation inducers and protective solutes. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1183-1186.	1.3	11
155	Isolation and characterization of bacterial strains with the ability to utilize high concentrations of levulinic acid, a platform chemical from inedible biomass. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1552-1555.	1.3	11
156	Formation of Glycolipid Biosurfactant, Mannosylerythritol Lipid, by Candida antarctica from Aliphatic Hydrocarbons via Subterminal Oxidation Pathway. Journal of Japan Oil Chemists' Society, 1999, 48, 1377-1384,1417.	0.3	10
157	Effect of Glyceric Acid Calcium Salt on the Viability of Ethanol-Dosed Gastric Cells. Journal of Oleo Science, 2011, 60, 585-590.	1.4	10
158	Monolayer Behavior of Cyclic and Linear Forms of Surfactins: Thermodynamic Analysis of Langmuir Monolayers and AFM Study of Langmuir-Blodgett Monolayers. Journal of Oleo Science, 2014, 63, 407-412.	1.4	10
159	Draft Genome Sequence of the Yeast <i>Starmerella bombicola</i> NBRC10243, a Producer of Sophorolipids, Glycolipid Biosurfactants. Genome Announcements, 2015, 3, .	0.8	10
160	Hydroxyl groups at C-3 and at C-17 of the unnatural enantiomer, ent-androsta-5,9(11)-diene- $3\hat{i}^2$,17 \hat{i}^2 -diol are oxidised by cholesterol oxidase from Rhodococcus erythropolis. Tetrahedron Letters, 2001, 42, 505-507.	1.4	9
161	Glycerol Conversion to D-Xylulose by a Two-stage Microbial Reaction Using Candida parapsilosis and Gluconobacter oxydans. Journal of Oleo Science, 2009, 58, 595-600.	1.4	9
162	Surface Properties of Lipoplexes Modified with Mannosylerythritol Lipid-A and Tween 80 and Their Cellular Association. Chemical and Pharmaceutical Bulletin, 2009, 57, 138-143.	1.3	9

#	Article	IF	Citations
163	Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D. Journal of Oleo Science, 2012, 61, 285-289.	1.4	9
164	Selective production of two diastereomers of disaccharide sugar alcohol, mannosylerythritol by Pseudozyma yeasts. Applied Microbiology and Biotechnology, 2014, 98, 823-830.	3.6	9
165	Synthesis of Dilinoleoyl-D-Glyceric Acid and Evaluation of Its Cytotoxicity to Human Dermal Fibroblast and Endothelial Cells. Journal of Oleo Science, 2011, 60, 483-487.	1.4	8
166	Biochemical synthesis of novel, self-assembling glycolipids from ricinoleic acid by a recombinant \hat{l}_{\pm} -glucosidase from Geobacillus sp Biotechnology Letters, 2011, 33, 139-145.	2.2	8
167	Membrane-Bound Alcohol Dehydrogenase Is Essential for Glyceric Acid Production in Acetobacter tropicalis. Journal of Oleo Science, 2011, 60, 489-494.	1.4	8
168	Isolation and Characterization of Thermotolerant Fungi Producing Lignoceric Acid from Glycerol. Journal of Oleo Science, 2008, 57, 251-255.	1.4	7
169	Monolayer Behavior of Binary Systems of Lactonic and Acidic Forms of Sophorolipids: Thermodynamic Analyses of Langmuir Monolayers and AFM Study of Langmuir^ ^ndash;Blodgett Monolayers. Journal of Oleo Science, 2014, 63, 67-73.	1.4	7
170	Microbial resolution of dl-glyceric acid for l-glyceric acid production with newly isolated bacterial strains. Journal of Bioscience and Bioengineering, 2015, 119, 554-557.	2.2	7
171	Glycolipid Biosurfactants, Mannosylerythritol Lipids: Distinctive Interfacial Properties and Applications in Cosmetic and Personal Care Products. Journal of Oleo Science, 2021, 71, 1-13.	1.4	7
172	The role of <i>PaAAC1</i> encoding a mitochondrial ADP/ATP carrier in the biosynthesis of extracellular glycolipids, mannosylerythritol lipids, in the basidiomycetous yeast <i>Pseudozyma antarctica</i> Yeast, 2010, 27, 379-388.	1.7	6
173	Detection of Acetyl Monoglyceride as a Metabolite of Newly Isolated Glycerol-assimilating Bacteria. Journal of Oleo Science, 2009, 58, 147-154.	1.4	5
174	Stepwise synthesis of 2,3- <i>O</i> -dipalmitoyl-D-glyceric acid and an in vitro evaluation of its cytotoxicity. Journal of Oleo Science, 2012, 61, 337-341.	1.4	5
175	Preliminary Evaluation of Glyceric Acid-producing Ability of <i>Acidomonas methanolica</i> NBRC104435 from Glycerol Containing Methanol. Journal of Oleo Science, 2017, 66, 653-658.	1.4	4
176	A single chip AV decoder for the DVD player adopting the MCP architecture. , 0, , .		3
177	Photooxidative mineralization of microorganisms-produced glycolipid biosurfactants by a titania-mediated advanced oxidation process. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 209, 147-152.	3.9	3
178	Expression and Characterization of a Class III Alcohol Dehydrogenase Gene from Gluconobacter frateurii in the Presence of Methanol during Glyceric Acid Production from Glycerol. Journal of Oleo Science, 2013, 62, 835-842.	1.4	3
179	Production of Glycolipid Biosurfactants and Their Functional Development. Oleoscience, 2003, 3, 663-672,642.	0.0	3
180	Effect of Liposome-Encapsulated Chlorella Extract on Hypertension in Spontaneously Hypertensive Rats. Journal of the Japanese Society for Food Science and Technology, 2009, 56, 573-578.	0.1	2

#	Article	IF	CITATIONS
181	Synthesis and Characterization of Dioctanoyl Glycerate as Water-soluble Trypsin Inhibitor. Journal of Oleo Science, 2016, 65, 251-256.	1.4	2
182	Comparative Study of Interfacial and Biological Properties in ⟨scp⟩d⟨/scp⟩â€Glycerateâ€Derived Surfactants. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1393-1401.	1.9	2
183	Effect of Membrane-bound Aldehyde Dehydrogenase-encoding Gene Disruption on Glyceric Acid Production in Gluconobacter oxydans. Journal of Oleo Science, 2014, 63, 953-957.	1.4	2
184	Production and Application of Biosurfactant, Mannosylerythritol Lipid, for Sustainable Cosmetics. Oleoscience, 2015, 15, 547-553.	0.0	1
185	Synthesis and Characterization of a Novel Glycolipid with Glucosylglycerate as a Hydrophile Showing Protective Effects on Heat-induced Protein Denaturation. Journal of Oleo Science, 2019, 68, 493-499.	1.4	1
186	One-step separation of phospholipids from triacyglycerols with asymmetric polyimide membrane in organic solution. Biotechnology Letters, 1996, 10, 825-830.	0.5	0
187	Novel glycolipid-type surfactants synthesized by a recombinant α-glucosidase of Geobacillus sp. HTA-462, a deep-sea microorganism. Journal of Biotechnology, 2010, 150, 408-409.	3.8	О
188	Production of Glycolipid Biosurfactants and Their Potential Applications. Oleoscience, 2014, 14, 465-472.	0.0	0
189	Development of Microbial Biosurfactants Contributing to Low-Carbon Society. Journal of the Japan Society of Colour Material, 2010, 83, 76-81.	0.1	0