Alexander K Andrianov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/567851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112008119.	3.3	7
2	Cationic Fluoropolyphosphazenes: Synthesis and Assembly with Heparin as a Pathway to Hemocompatible Nanocoatings. ACS Applied Bio Materials, 2022, 5, 313-321.	2.3	6
3	Hierarchically Structured, All-Aqueous-Coated Hydrophobic Surfaces with pH-Selective Droplet Transfer Capability. ACS Applied Materials & Interfaces, 2022, 14, 26225-26237.	4.0	7
4	<i>In Vivo</i> and <i>In Vitro</i> Potency of Polyphosphazene Immunoadjuvants with Hepatitis C Virus Antigen and the Role of Their Supramolecular Assembly. Molecular Pharmaceutics, 2021, 18, 726-734.	2.3	16
5	Polyphosphazenes enable durable, hemocompatible, highly efficient antibacterial coatings. Biomaterials, 2021, 268, 120586.	5.7	26
6	Polyphosphazene immunoadjuvants: Historical perspective and recent advances. Journal of Controlled Release, 2021, 329, 299-315.	4.8	33
7	Ionic Fluoropolyphosphazenes as Potential Adhesive Agents for Dental Restoration Applications. Regenerative Engineering and Translational Medicine, 2021, 7, 10-20.	1.6	4
8	Intracellular Delivery of Active Proteins by Polyphosphazene Polymers. Pharmaceutics, 2021, 13, 249.	2.0	9
9	Improvement of RG1-VLP vaccine performance in BALB/c mice by substitution of alhydrogel with the next generation polyphosphazene adjuvant PCEP. Human Vaccines and Immunotherapeutics, 2021, 17, 2748-2761.	1.4	11
10	Next generation polyphosphazene immunoadjuvant: Synthesis, self-assembly and in vivo potency with human papillomavirus VLPs-based vaccine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102359.	1.7	13
11	Immunopotentiating and Delivery Systems for HCV Vaccines. Viruses, 2021, 13, 981.	1.5	7
12	Design of a native-like secreted form of the hepatitis C virus E1E2 heterodimer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
13	Nano-Assembly of Quisinostat and Biodegradable Macromolecular Carrier Results in Supramolecular Complexes with Slow-Release Capabilities. Pharmaceutics, 2021, 13, 1834.	2.0	2
14	Protein-loaded soluble and nanoparticulate formulations of ionic polyphosphazenes and their interactions on molecular and cellular levels. Materials Science and Engineering C, 2020, 106, 110179.	3.8	15
15	Structure-Based Design of Hepatitis C Virus E2 Glycoprotein Improves Serum Binding and Cross-Neutralization. Journal of Virology, 2020, 94, .	1.5	17
16	Supramolecular Assembly of Toll-like Receptor 7/8 Agonist into Multimeric Water-Soluble Constructs Enables Superior Immune Stimulation <i>In Vitro</i> and <i>In Vivo</i> . ACS Applied Bio Materials, 2020, 3, 3187-3195.	2.3	23
17	New Family of Water-Soluble Sulfo–Fluoro Polyphosphazenes and Their Assembly within Hemocompatible Nanocoatings. ACS Applied Bio Materials, 2019, 2, 3897-3906.	2.3	11
18	Biocompatible Nanocoatings of Fluorinated Polyphosphazenes through Aqueous Assembly. ACS Applied Materials & Interfaces, 2018, 10, 9756-9764.	4.0	28

Alexander K Andrianov

#	Article	IF	CITATIONS
19	Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. Nature Communications, 2018, 9, 877.	5.8	65
20	Fluorinated Polyphosphazene Coatings Using Aqueous Nano-Assembly of Polyphosphazene Polyelectrolytes. ACS Symposium Series, 2018, , 101-118.	0.5	8
21	Hydrolytically Degradable PEGylated Polyelectrolyte Nanocomplexes for Protein Delivery. Biomacromolecules, 2018, 19, 3467-3478.	2.6	29
22	Self-Assembling Ionic Polyphosphazenes and Their Biomedical Applications. ACS Symposium Series, 2018, , 27-49.	0.5	1
23	Biodegradable "Scaffold―Polyphosphazenes for Non-Covalent PEGylation of Proteins. ACS Symposium Series, 2018, , 121-141.	O.5	3
24	Biodegradable "Smart―Polyphosphazenes with Intrinsic Multifunctionality as Intracellular Protein Delivery Vehicles. Biomacromolecules, 2017, 18, 2000-2011.	2.6	41
25	PCPP-Adjuvanted Respiratory Syncytial Virus (RSV) sF Subunit Vaccine: Self-Assembled Supramolecular Complexes Enable Enhanced Immunogenicity and Protection. Molecular Pharmaceutics, 2017, 14, 2285-2293.	2.3	28
26	Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids. Polymers, 2016, 8, 161.	2.0	33
27	Molecular-Level Interactions of Polyphosphazene Immunoadjuvants and Their Potential Role in Antigen Presentation and Cell Stimulation. Biomacromolecules, 2016, 17, 3732-3742.	2.6	43
28	Self-assembly of polyphosphazene immunoadjuvant with poly(ethylene oxide) enables advanced nanoscale delivery modalities and regulated pH-dependent cellular membrane activity. Heliyon, 2016, 2, e00102.	1.4	20
29	Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clinical and Experimental Vaccine Research, 2015, 4, 23.	1.1	91
30	The effect of stable macromolecular complexes of ionic polyphosphazene on HIV Gag antigen and on activation of human dendritic cells and presentation to T-cells. Biomaterials, 2014, 35, 8876-8886.	5.7	30
31	Microneedles for Intradermal Vaccination: Immunopotentiation and Formulation Aspects. , 2013, , 217-232.		Ο
32	Intradermal immunization using coated microneedles containing an immunoadjuvant. Vaccine, 2012, 30, 4355-4360.	1.7	15
33	Microneedles with Intrinsic Immunoadjuvant Properties: Microfabrication, Protein Stability, and Modulated Release. Pharmaceutical Research, 2011, 28, 58-65.	1.7	40
34	PCPP-Formulated H5N1 Influenza Vaccine Displays Improved Stability and Dose-Sparing Effect in Lethal Challenge Studies. Journal of Pharmaceutical Sciences, 2011, 100, 1436-1443.	1.6	30
35	Carboxymethylcellulose–Chitosanâ€coated microneedles with modulated hydration properties. Journal of Applied Polymer Science, 2011, 121, 395-401.	1.3	26
36	Protein Stabilization in Aqueous Solutions of Polyphosphazene Polyelectrolyte and Non-Ionic Surfactants. Biomacromolecules, 2010, 11, 2268-2273.	2.6	38

#	Article	IF	CITATIONS
37	Effect of Environmental Factors on Hydrolytic Degradation of Water-Soluble Polyphosphazene Polyelectrolyte in Aqueous Solutions. Biomacromolecules, 2010, 11, 2033-2038.	2.6	52
38	Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18936-18941.	3.3	141
39	Microneedle-Based Vaccines. Current Topics in Microbiology and Immunology, 2009, 333, 369-393.	0.7	229
40	Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine, 2007, 25, 1204-1213.	1.7	100
41	Fluorinated polyphosphazene polyelectrolytes. Journal of Applied Polymer Science, 2007, 103, 53-58.	1.3	21
42	Water-Soluble Polyphosphazenes for Biomedical Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 16, 397-406.	1.9	38
43	Degradation of Polyaminophosphazenes:Â Effects of Hydrolytic Environment and Polymer Processing. Biomacromolecules, 2006, 7, 1581-1586.	2.6	60
44	Synthesis, Properties, and Biological Activity of Poly[di(sodium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 462 Td (car	boxylatoe	thylphenoxy)
45	Polyphosphazene microspheres: Preparation by ionic complexation of phosphazene polyacids with spermine. Journal of Applied Polymer Science, 2006, 101, 414-419.	1.3	40
46	Water-Soluble Biodegradable Polyphosphazenes Containing N-Ethylpyrrolidone Groups. Macromolecules, 2005, 38, 7972-7976.	2.2	53
47	Polyphosphazene Polyelectrolytes:Â A Link between the Formation of Noncovalent Complexes with Antigenic Proteins and Immunostimulating Activity. Biomacromolecules, 2005, 6, 1375-1379.	2.6	97
			_

47	Antigenic Proteins and Immunostimulating Activity. Biomacromolecules, 2005, 6, 1375-1379.	2.6	97
48	Poly(dichlorophosphazene) As a Precursor for Biologically Active Polyphosphazenes:  Synthesis, Characterization, and Stabilization. Macromolecules, 2004, 37, 414-420.	2.2	83
49	Novel Route to Sulfonated Polyphosphazenes: Single-Step Synthesis Using "Noncovalent Protection― of Sulfonic Acid Functionality. Macromolecules, 2004, 37, 4075-4080.	2.2	41
50	Synthesis and Biologically Relevant Properties of Polyphosphazene Polyacids. Biomacromolecules, 2004, 5, 1999-2006.	2.6	111
51	Ionically Cross-Linked Polyphosphazene Microspheres. ACS Symposium Series, 2000, , 395-406.	0.5	5
52	Protein release from polyphosphazene matrices. Advanced Drug Delivery Reviews, 1998, 31, 185-196.	6.6	109
53	Polymeric carriers for oral uptake of microparticulates. Advanced Drug Delivery Reviews, 1998, 34, 155-170.	6.6	138
54	Preparation of hydrogel microspheres by coacervation of aqueous polyphosphazene solutions. Biomaterials, 1998, 19, 109-115.	5.7	88

Alexander K Andrianov

#	Article	IF	CITATIONS
55	Poly[di(carboxylatophenoxy)phosphazene] (PCPP) is a potent immunoadjuvant for an influenza vaccine. Vaccine, 1998, 16, 92-98.	1.7	102
56	Synthesis, Physico-Chemical Properties and Immunoadjuvant Activity of Water-Soluble Phosphazene Polyacids. Journal of Bioactive and Compatible Polymers, 1998, 13, 243-256.	0.8	30
57	Characterization of poly[di(carboxylatophenoxy) phosphazene] by an aqueous gel permeation chromatography. Journal of Applied Polymer Science, 1996, 60, 2289-2295.	1.3	31
58	Water-Soluble Phosphazene Polymers for Parenteral and Mucosal Vaccine Delivery. Pharmaceutical Biotechnology, 1995, 6, 473-493.	0.3	57
59	Hydrolytic degradation of ionically cross-linked polyphosphazene microspheres. Journal of Applied Polymer Science, 1994, 53, 1573-1578.	1.3	43
60	Controlled release using ionotropic polyphosphazene hydrogels. Journal of Controlled Release, 1993, 27, 69-77.	4.8	64
61	Kinetics of the solvolytic reaction between polymer hydrogels carrying oxime groups and O,O′-diethyl-O-p-nitrophenyl phosphate. Polymer Science USSR, 1991, 33, 1006-1012.	0.2	3
62	Radical graft polymerization of methyl methacrylate on inorganic fillers initiated by surface S-methyl-N,N-diethyldithiocarbanate groups. Polymer Science USSR, 1987, 29, 657-662.	0.2	0
63	Graft polymerization of vinyl monomers on the surface of solid inorganic materials photoinitiated by the systems Rî—,CCl3-carbonyls of transition metals. Polymer Science USSR, 1984, 26, 2917-2923.	0.2	3
64	The study of photo-initiated graft polymerization of vinyl monomers on inorganic materials. Polymer Science USSR, 1983, 25, 2314-2320.	0.2	2
65	Polyphosphazenes as Vaccine Adjuvants. , 0, , 355-378.		10
66	Transport Properties of Polyphosphazenes. , 0, , 325-344.		16
67	Synthesis and Chemical Regularity in Phosphazene Copolymers. , 0, , 377-410.		Ο
68	Expanding Options in Polyphosphazene Biomedical Research. , 0, , 15-43.		5
69	Potential of Polyphosphazenes in Modulating Vaccine-Induced Immune Responses: II. Investigations in Large Animals. , 0, , 77-84.		3
70	Biodegradable Polyphosphazene Scaffolds for Tissue Engineering. , 0, , 117-138.		6