## Miron Landau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5678223/publications.pdf Version: 2024-02-01



ΜΙΦΟΝΙΑΝΠΑΙΙ

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels<br>through hydrogenation. Journal of Catalysis, 2017, 348, 29-39.                                          | 6.2  | 141       |
| 2  | Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel, 2015, 139, 684-691.                                                                                                                 | 6.4  | 96        |
| 3  | Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics. Fuel, 2015, 161, 287-294.                                                                                          | 6.4  | 95        |
| 4  | Sustainable Production of Green Feed from Carbon Dioxide and Hydrogen. ChemSusChem, 2014, 7, 785-794.                                                                                                             | 6.8  | 74        |
| 5  | A commercially-viable, one-step process for production of green diesel from soybean oil on Pt/SAPO-11.<br>Fuel, 2013, 111, 157-164.                                                                               | 6.4  | 72        |
| 6  | Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in<br>hydrodeoxygenation–isomerization–aromatization of vegetable oil. Journal of Catalysis, 2015, 332,<br>164-176.                                  | 6.2  | 72        |
| 7  | Conversion of CO <sub>2</sub> , CO, and H <sub>2</sub> in CO <sub>2</sub> Hydrogenation to<br>Fungible Liquid Fuels on Fe-Based Catalysts. Industrial & Engineering Chemistry Research, 2017, 56,<br>13334-13355. | 3.7  | 66        |
| 8  | Ultradeep Hydrodesulfurization and Adsorptive Desulfurization of Diesel Fuel on Metal-Rich Nickel<br>Phosphides. Industrial & Engineering Chemistry Research, 2009, 48, 5239-5249.                                | 3.7  | 60        |
| 9  | From macroalgae to liquid fuel via waste-water remediation, hydrothermal upgrading, carbon dioxide<br>hydrogenation and hydrotreating. Energy and Environmental Science, 2016, 9, 1828-1840.                      | 30.8 | 59        |
| 10 | Grain boundary control in nanocrystalline MgO as a novel means for significantly enhancing surface basicity and catalytic activity. Journal of Catalysis, 2009, 263, 196-204.                                     | 6.2  | 55        |
| 11 | Thermostable sulfated 2–4 nm tetragonal ZrO2 with high loading in nanotubes of SBA-15: a superior acidic catalytic material. Chemical Communications, 2003, , 594-595.                                            | 4.1  | 45        |
| 12 | Control of surface acidity and catalytic activity of γ-Al2O3 by adjusting the nanocrystalline contact interface. Journal of Catalysis, 2011, 282, 215-227.                                                        | 6.2  | 43        |
| 13 | Characterization of Aluminum Species in Alumina Multilayer Grafted MCM-41 Using 27Al FAM(II)-MQMAS NMR. Journal of Physical Chemistry B, 2003, 107, 724-731.                                                      | 2.6  | 41        |
| 14 | Novel process and catalytic materials for converting CO <sub>2</sub> and H <sub>2</sub> containing mixtures to liquid fuels and chemicals. Faraday Discussions, 2015, 183, 197-215.                               | 3.2  | 41        |
| 15 | Novel bifunctional catalysts based on crystalline multi-oxide matrices containing iron ions for<br>CO <sub>2</sub> hydrogenation to liquid fuels and chemicals. Faraday Discussions, 2016, 188, 545-563.          | 3.2  | 37        |
| 16 | Electrospun Fe–Al–O Nanobelts for Selective CO <sub>2</sub> Hydrogenation to Light Olefins. ACS<br>Applied Materials & Interfaces, 2020, 12, 24855-24867.                                                         | 8.0  | 31        |
| 17 | Ultradeep Adsorptionâ^'Desulfurization of Gasoline with Ni/Alâ^'SiO <sub>2</sub> Material Catalytically<br>Facilitated by Ethanol. Industrial & Engineering Chemistry Research, 2008, 47, 6904-6916.              | 3.7  | 30        |
| 18 | Fixed-bed catalytic wet peroxide oxidation of phenol with titania and Au/titania catalysts in dark.<br>Catalysis Today, 2015, 241, 63-72.                                                                         | 4.4  | 29        |

Miron Landau

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | CO <sub>2</sub> hydrogenation to higher hydrocarbons on K/Fe–Al–O spinel catalysts promoted with<br>Si, Ti, Zr, Hf, Mn and Ce. Catalysis Science and Technology, 2017, 7, 4048-4063.                                             | 4.1 | 28        |
| 20 | Density Functional Theory Study of Sulfur Adsorption at the (001) Surface of Metal-Rich Nickel Phosphides: Effect of the Ni/P Ratio. Journal of Physical Chemistry C, 2010, 114, 13313-13321.                                    | 3.1 | 27        |
| 21 | Alumina Foam Coated with Nanostructured Chromia Aerogel:Â Efficient Catalytic Material for<br>Complete Combustion of Chlorinated VOC. Industrial & Engineering Chemistry Research, 2006, 45,<br>7462-7469.                       | 3.7 | 19        |
| 22 | Grain boundaries in nanocrystalline catalytic materials as a source of surface chemical functionality.<br>Reviews in Chemical Engineering, 2014, 30, 379-401.                                                                    | 4.4 | 17        |
| 23 | Performance of Reverse Water Gas Shift on Coprecipitated and Câ€Templated BaFeâ€Hexaaluminate: The<br>Effect of Fe Loading, Texture, and Promotion with K. ChemCatChem, 2018, 10, 3795-3805.                                     | 3.7 | 13        |
| 24 | Reverse Water Gas Shift by Chemical Looping with Iron-Substituted Hexaaluminate Catalysts.<br>Catalysts, 2020, 10, 1082.                                                                                                         | 3.5 | 13        |
| 25 | Techno-economic analysis of a sustainable process for converting CO <sub>2</sub> and<br>H <sub>2</sub> O to feedstock for fuels and chemicals. Sustainable Energy and Fuels, 2021, 5, 486-500.                                   | 4.9 | 13        |
| 26 | Grain boundaries at the surface of consolidated MgO nanocrystals and acid–base functionality.<br>Physical Chemistry Chemical Physics, 2013, 15, 14783.                                                                           | 2.8 | 12        |
| 27 | Decoration of multiwall carbon nanotubes with nickel nanoparticles: effect of deposition strategy on metal dispersion and performance in the hydrogenation of p-chloroacetophenone. Mendeleev Communications, 2011, 21, 125-128. | 1.6 | 10        |
| 28 | Hydrogenation of CO <sub>2</sub> on Fe-Based Catalysts: Preferred Route to Renewable Liquid Fuels.<br>Industrial & Engineering Chemistry Research, 2022, 61, 10387-10399.                                                        | 3.7 | 9         |
| 29 | Effect of Surface Chemistry and Crystallographic Parameters of TiO2 Anatase Nanocrystals on<br>Photocatalytic Degradation of Bisphenol A. Catalysts, 2019, 9, 447.                                                               | 3.5 | 8         |
| 30 | The Sonochemical Insertion of Nanomaterials into Mesostructures. Transactions of the Indian Ceramic Society, 2004, 63, 137-144.                                                                                                  | 1.0 | 7         |
| 31 | Core-Shell Fe2O3@La1â^`xSrxFeO3â^`Î^ Material for Catalytic Oxidations: Coverage of Iron Oxide Core,<br>Oxygen Storage Capacity and Reactivity of Surface Oxygens. Materials, 2021, 14, 7355.                                    | 2.9 | 7         |
| 32 | Electrospun nanofibers with surface oriented lamellar patterns and their potential applications.<br>Nanoscale, 2020, 12, 12993-13000.                                                                                            | 5.6 | 6         |
| 33 | Corrugation of the external surface of multiwall carbon nanotubes by catalytic oxidative etching and its effect on their decoration with metal nanoparticles. Journal of Materials Science, 2011, 46, 2162-2172.                 | 3.7 | 5         |
| 34 | Effect of surface acidity-basicity balance in modified ZnxZryOz catalyst on its performance in the conversion of hydrous ethanol to hydrocarbons. Journal of Industrial and Engineering Chemistry, 2021, 95, 156-169.            | 5.8 | 5         |
| 35 | Homogeneous Tubularâ€Flow Process for Monoolein Preparation. JAOCS, Journal of the American Oil<br>Chemists' Society, 2015, 92, 1525-1529.                                                                                       | 1.9 | 4         |
| 36 | Application of Cs salt of 12-tungstophosphoric acid supported on SBA-15 mesoporous silica in NO x storage. Topics in Catalysis, 2007, 42-43, 203-207.                                                                            | 2.8 | 3         |

Miron Landau

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Alumina as Solid tate Ligand in Enhancing the Redox Catalytic Property of Iron Oxide Grafted AlSBAâ€15<br>towards Arylation of Arene. ChemCatChem, 2018, 10, 4768-4776.                                      | 3.7 | 3         |
| 38 | Chemical looping reaction of methane with oxygen from La0.8Sr0.2FeO3-δ and La0.8Sr0.2FeO3-δ -Fe2O3 systems to syngas. Discover Chemical Engineering, 2022, 2, 1.                                             | 2.2 | 3         |
| 39 | Relationship of Crystals Shape, Aggregation Mode and Surface Purity in Catalytic Wet Peroxide<br>Oxidation of Phenol in Dark with Titania Anatase Nanocrystals. Catalysis Letters, 2018, 148, 3524-3533.     | 2.6 | 2         |
| 40 | Al-Doped magnetite encapsulated in mesoporous carbon: a long-lasting Fenton catalyst for CWPO of phenol in a fixed-bed reactor under mild conditions. Catalysis Science and Technology, 2021, 11, 7368-7379. | 4.1 | 2         |
| 41 | Eco-Friendly and Sustainable Process for Converting Hydrous Bioethanol to Butanol. Catalysts, 2021, 11, 498.                                                                                                 | 3.5 | 2         |
| 42 | Effects of acyl donor type, catalyst type, and reaction conditions on the activity and selectivity of<br>Friedel-Crafts acylation. Chemical Papers, 2009, 63, .                                              | 2.2 | 1         |