
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5678050/publications.pdf Version: 2024-02-01

ΙΠΠΗΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Novel design and synthesis of 1D bamboo-like CNTs@Sn4P3@C coaxial nanotubes for long-term sodium ion storage. Green Energy and Environment, 2022, 7, 1199-1205.	4.7	7
2	Regulating non-precious transition metal nitrides bifunctional electrocatalysts through surface/interface nanoengineering for air-cathodes of Zn-air batteries. Green Energy and Environment, 2022, 7, 16-34.	4.7	36
3	A durable P2-type layered oxide cathode with superior low-temperature performance for sodium-ion batteries. Science China Materials, 2022, 65, 328-336.	3.5	22
4	An integrated flexible film as cathode for High-Performance Lithium–Sulfur battery. Journal of Colloid and Interface Science, 2022, 606, 1627-1635.	5.0	7
5	A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects. Applied Energy, 2022, 305, 117849.	5.1	44
6	Boosting practical high voltage lithium metal batteries by butyronitrile in ether electrolytes via coordination, hydrolysis of C N and relatively mild concentration strategy. Journal of Energy Chemistry, 2022, 67, 290-299.	7.1	10
7	ZnS anchored on porous N, S-codoped carbon as superior oxygen reduction reaction electrocatalysts for Al-air batteries. Journal of Colloid and Interface Science, 2022, 609, 868-877.	5.0	6
8	Polaron in TiO ₂ from Firstâ€Principles: A Review. Advanced Theory and Simulations, 2022, 5, 2100244.	1.3	10
9	A Review of Performance Attenuation and Mitigation Strategies of Lithiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, 2107769.	7.8	43
10	Bifunctional water splitting enhancement by manipulating Mo-H bonding energy of transition Metal-Mo2C heterostructure catalysts. Chemical Engineering Journal, 2022, 431, 134126.	6.6	49
11	Prussian blue analogues derived electrocatalyst with multicatalytic centers for boosting oxygen reduction reaction in the wide pH range. Journal of Colloid and Interface Science, 2022, 612, 639-649.	5.0	15
12	Lessâ€Energy Consumed Hydrogen Evolution Coupled with Electrocatalytic Removal of Ethanolamine Pollutant in Saline Water over Ni@Ni ₃ S ₂ /CNT Nanoâ€Heterostructured Electrocatalysts. Small Methods, 2022, 6, e2101195.	4.6	10
13	Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Analytical Chemistry, 2022, 94, 1499-1509.	3.2	37
14	Novel Dithiolene Nickel Complex Catalysts for Electrochemical Hydrogen Evolution Reaction for Hydrogen Production in Nonaqueous and Aqueous Solutions. Electrocatalysis, 2022, 13, 230.	1.5	6
15	Adina Rubellaâ€Like Microsized SiO@Nâ€Doped Carbon Grafted with Nâ€Doped Carbon Nanotubes as Anodes for Highâ€Performance Lithium Storage. Small Science, 2022, 2, .	5.8	33
16	A review of sodium chloride-based electrolytes and materials for electrochemical energy technology. Journal of Materials Chemistry A, 2022, 10, 2637-2671.	5.2	23
17	Construction of a High-Stability and Low-Nucleation-Barrier Cu ₃ Sn Alloy Layer on Carbon Paper for Dendrite-Free Li Metal Deposition. ACS Applied Materials & Interfaces, 2022, 14, 2930-2938.	4.0	8
18	<i>In situ</i> construction of hetero-structured perovskite composites with exsolved Fe and Cu metallic nanoparticles as efficient CO ₂ reduction electrocatalysts for high performance solid oxide electrolysis cells. Journal of Materials Chemistry A, 2022, 10, 2509-2518.	5.2	30

#	Article	IF	CITATIONS
19	Toward Excellence of Electrocatalyst Design by Emerging Descriptorâ€Oriented Machine Learning. Advanced Functional Materials, 2022, 32, .	7.8	43
20	Enabling Fast Na ⁺ Transfer Kinetics in the Wholeâ€Voltageâ€Region of Hardâ€Carbon Anodes for Ultrahighâ€Rate Sodium Storage. Advanced Materials, 2022, 34, e2109282.	11.1	108
21	Host-guest supramolecular interaction behavior at the interface between anode and electrolyte for long life Zn anode. Journal of Energy Chemistry, 2022, 69, 237-243.	7.1	34
22	Electrocatalyst nanoarchitectonics with molybdenum-cobalt bimetallic alloy encapsulated in nitrogen-doped carbon for water splitting reaction. Journal of Alloys and Compounds, 2022, 904, 164084.	2.8	29
23	High-efficient carbon dioxide-to-formic acid conversion on bimetallic PbIn alloy catalysts with tuned composition and morphology. Chemosphere, 2022, 293, 133595.	4.2	11
24	One-pot synthesis and multifunctional surface modification of lithium-rich manganese-based cathode for enhanced structural stability and low-temperature performance. Journal of Colloid and Interface Science, 2022, 615, 1-9.	5.0	6
25	Layered FeCoNi double hydroxides with tailored surface electronic configurations induced by oxygen and unsaturated metal vacancies for boosting the overall water splitting process. Nanoscale, 2022, 14, 4156-4169.	2.8	10
26	Enhancement Effect of Chemisorbed Sulfate toward Electrochemical Oxidation of Ethanol on Platinum Electrodes. Journal of Physical Chemistry C, 2022, 126, 3397-3403.	1.5	8
27	Structure adapting of bulk FeS2 micron particles and the corresponding anode for high performance sodium-ion batteries. Journal of Materiomics, 2022, 8, 1278-1286.	2.8	3
28	Synthesis and Characterization of Poly(5'â€hexyloxyâ€1',4â€biphenyl)― <i>b</i> â€poly(2',4'â€bispropoxysulfonateâ€1',4â€biphenyl) with High Ion Exchange Capacity for Proton Ex Membrane Fuel Cell Applications. Chemistry - an Asian Journal, 2022, , .	change	2
29	Interfacial Engineering of Twoâ€Dimensional MoN/MoO ₂ Heterostructure Nanosheets as a Bifunctional Electrocatalyst for Overall Water Splitting. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
30	Lessâ€Energy Consumed Hydrogen Evolution Coupled with Electrocatalytic Removal of Ethanolamine Pollutant in Saline Water over Ni@Ni ₃ S ₂ /CNT Nanoâ€Heterostructured Electrocatalysts (Small Methods 3/2022). Small Methods, 2022, 6, .	4.6	1
31	Densely packed ultrafine SnO2 nanoparticles grown on carbon cloth for selective CO2 reduction to formate. Journal of Energy Chemistry, 2022, 71, 159-166.	7.1	17
32	Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17415-17425.	4.0	16
33	Highâ€Rate Performance of Fluorinated Carbon Material Doped by Phosphorus Species for Lithiumâ€Fluorinated Carbon Battery. Energy Technology, 2022, 10, .	1.8	10
34	Fast and extensive intercalation chemistry in Wadsley-Roth phase based high-capacity electrodes. Journal of Energy Chemistry, 2022, 69, 601-611.	7.1	6
35	The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coordination Chemistry Reviews, 2022, 461, 214493.	9.5	91
36	Fe–N–C single-atom nanozymes based sensor array for dual signal selective determination of antioxidants. Biosensors and Bioelectronics, 2022, 205, 114097.	5.3	45

#	Article	IF	CITATIONS
37	Regulating the Electron Localization of Metallic Bismuth for Boosting CO2 Electroreduction. Nano-Micro Letters, 2022, 14, 38.	14.4	21
38	Moderate Specific Surface Areas Help Three-Dimensional Frameworks Achieve Dendrite-Free Potassium-Metal Anodes. ACS Applied Materials & Interfaces, 2022, 14, 900-909.	4.0	16
39	Modulating the Graphitic Domains of Hard Carbons Derived from Mixed Pitch and Resin to Achieve High Rate and Stable Sodium Storage. Small, 2022, 18, e2105568.	5.2	47
40	Electronic structural modulation of bismuth catalysts induced by sulfur and oxygen co-doping for promoting CO ₂ electroreduction. Dalton Transactions, 2022, 51, 7223-7233.	1.6	3
41	Zeolitic imidazolate framework-derived composites with SnO ₂ and ZnO phase components for electrocatalytic carbon dioxide reduction. Dalton Transactions, 2022, 51, 7274-7283.	1.6	8
42	Facile Synthesis of Surfactantâ€Induced Platinum Nanospheres with a Porous Network Structure for Highly Effective Oxygen Reduction Catalysis. Chemistry - an Asian Journal, 2022, 17, .	1.7	8
43	In Situ Anchoring Anionâ€Rich and Multiâ€Cavity NiS ₂ Nanoparticles on NCNTs for Advanced Magnesiumâ€Ion Batteries. Advanced Science, 2022, 9, e2200067.	5.6	23
44	Electronic synergy to boost the performance of NiCoP-NWs@FeCoP-NSs anodes for flexible lithium-ion batteries. Nanoscale, 2022, 14, 8398-8408.	2.8	5
45	Sub-zero temperature electrolytes for lithium-sulfur batteries: Functional mechanisms, challenges and perspectives. Chemical Engineering Journal, 2022, 443, 136637.	6.6	12
46	Mesoporous Ti ₄ O ₇ Nanosheets with High Polar Surface Area for Catalyzing Separator to Reduce the Shuttle Effect of Soluble Polysulfides in Lithiumâ€sulfur Batteries. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
47	Facile carbon cloth activation strategy to boost oxygen reduction reaction performance for flexible zincâ€air battery application. , 2022, 4, 762-775.		6
48	High efficiency UOR electrocatalyst based on crossed nanosheet structured FeCo-LDH for hydrogen production. Applied Catalysis A: General, 2022, 643, 118745.	2.2	18
49	Three-dimensional nitrogen-doped MXene as support to form high-performance platinum catalysts for water-electrolysis to produce hydrogen. Chemical Engineering Journal, 2022, 446, 137443.	6.6	18
50	Dual-template strategy for electrocatalyst of cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for oxygen reduction reaction. Journal of Colloid and Interface Science, 2021, 581, 523-532.	5.0	19
51	Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored TiO2@P-C3N4 core-shell nanorod arrays. Chemical Engineering Journal, 2021, 404, 126458.	6.6	56
52	Turning on Zn 4s Electrons in a N ₂ â€Znâ€B ₂ Configuration to Stimulate Remarkable ORR Performance. Angewandte Chemie, 2021, 133, 183-187.	1.6	42
53	Reconstruction of pH-universal atomic Fe N C catalysts towards oxygen reduction reaction. Journal of Colloid and Interface Science, 2021, 582, 1033-1040.	5.0	29
54	Hollow NiSe Nanocrystals Heterogenized with Carbon Nanotubes for Efficient Electrocatalytic Methanol Upgrading to Boost Hydrogen Coâ€Production. Advanced Functional Materials, 2021, 31, 2008812.	7.8	84

#	Article	IF	CITATIONS
55	Sandwich-structured graphene hollow spheres limited Mn2SnO4/SnO2 heterostructures as anode materials for high-performance lithium-ion batteries. Journal of Colloid and Interface Science, 2021, 586, 1-10.	5.0	23
56	High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chemical Society Reviews, 2021, 50, 1138-1187.	18.7	341
57	Enhanced Fe 3d delocalization and moderate spin polarization in Fe Ni atomic pairs for bifunctional ORR and OER electrocatalysis. Applied Catalysis B: Environmental, 2021, 285, 119778.	10.8	131
58	Progress in and application prospects of advanced and cost-effective iron (Fe)-based cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 1938-1969.	5.2	65
59	Nanoporous structured <scp>Snâ€MWCNT</scp> /Cu electrodes fabricated by electrodeposition–chemical dezincification for catalytic <scp>CO₂</scp> reduction. International Journal of Energy Research, 2021, 45, 6273-6284.	2.2	2
60	Metal chalcogenide-associated catalysts enabling CO ₂ electroreduction to produce low-carbon fuels for energy storage and emission reduction: catalyst structure, morphology, performance, and mechanism. Journal of Materials Chemistry A, 2021, 9, 2526-2559.	5.2	26
61	Turning on Zn 4s Electrons in a N ₂ â€Znâ€B ₂ Configuration to Stimulate Remarkable ORR Performance. Angewandte Chemie - International Edition, 2021, 60, 181-185.	7.2	161
62	Acid-treated multi-walled carbon nanotubes as additives for negative active materials to improve high-rate-partial-state-of-charge cycle-life of lead-acid batteries. RSC Advances, 2021, 11, 15273-15283.	1.7	10
63	Dendriteâ€free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. , 2021, 3, 153-166.		47
64	A closed-loop regeneration of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ and graphite from spent batteries <i>via</i> efficient lithium supplementation and structural remodelling. Sustainable Energy and Fuels, 2021, 5, 4981-4991.	2.5	21
65	MOF-based electrocatalysts for high-efficiency CO ₂ conversion: structure, performance, and perspectives. Journal of Materials Chemistry A, 2021, 9, 22710-22728.	5.2	20
66	Biomineralization-inspired synthesis of Na3V2(PO4)3 nanoparticles wrapped with 3D porous carbon as high-performance cathode for sodium-ion batteries. Ionics, 2021, 27, 1165-1175.	1.2	16
67	Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 6089-6108.	5.2	128
68	Catalytically active sites of MOF-derived electrocatalysts: synthesis, characterization, theoretical calculations, and functional mechanisms. Journal of Materials Chemistry A, 2021, 9, 20320-20344.	5.2	37
69	Surface-tuned two-dimension MXene scaffold for highly reversible zinc metal anode. Chinese Chemical Letters, 2021, 32, 2899-2903.	4.8	33
70	An overview of modification strategies to improve LiNi0·8Co0·1Mn0·1O2 (NCM811) cathode performance for automotive lithium-ion batteries. ETransportation, 2021, 7, 100105.	6.8	75
71	Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochemical Energy Reviews, 2021, 4, 473-507.	13.1	224
72	An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Materials Reports Energy, 2021, 1, 100002.	1.7	12

#	Article	IF	CITATIONS
73	Regulating Zn Deposition via an Artificial Solid–Electrolyte Interface with Aligned Dipoles for Long Life Zn Anode. Nano-Micro Letters, 2021, 13, 79.	14.4	117
74	Advanced Noncarbon Materials as Catalyst Supports and Non-noble Electrocatalysts for Fuel Cells and Metal–Air Batteries. Electrochemical Energy Reviews, 2021, 4, 336-381.	13.1	120
75	Potassiumâ€lon Activating Formation of Feâ^'Nâ^'C Moiety as Efficient Oxygen Electrocatalyst for Znâ€Air Batteries. ChemElectroChem, 2021, 8, 1298-1306.	1.7	10
76	Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Research, 2021, 14, 3690-3723.	5.8	30
77	Solid Oxide Electrolysis of H2O and CO2 to Produce Hydrogen and Low-Carbon Fuels. Electrochemical Energy Reviews, 2021, 4, 508-517.	13.1	69
78	Metathesis Reaction to Form Nanosheet-Structured Co(OH) ₂ Deposited on N-Doped Carbon as Composite Electrocatalysts for Oxygen Reduction. ACS Applied Energy Materials, 2021, 4, 4165-4172.	2.5	14
79	Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia. Nano-Micro Letters, 2021, 13, 125.	14.4	39
80	Boosting Electrocatalytic Performance of Co(OH) ₂ /NC for Oxygen Reduction Reaction by a Secondary-N-Doping Strategy. Journal of the Electrochemical Society, 2021, 168, 054520.	1.3	3
81	Carbon-Decorated Na ₃ V ₂ (PO ₄) ₃ as Ultralong Lifespan Cathodes for High-Energy-Density Symmetric Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 25036-25043.	4.0	55
82	Enhancement of the electrochemical performances for LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage by an effective dual-coating. Ionics, 2021, 27, 3239-3249.	1.2	3
83	Flexible S@C-CNTs cathodes with robust mechanical strength via blade-coating for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 592, 448-454.	5.0	24
84	A NOVEL CLOSED LOOP PROCESS FOR RECYCLING SPENT LI-ION BATTERY CATHODE MATERIALS. International Journal of Green Energy, 2021, 18, 1597-1612.	2.1	7
85	Enhanced performance of atomically dispersed dual-site Fe-Mn electrocatalysts through cascade reaction mechanism. Applied Catalysis B: Environmental, 2021, 288, 120021.	10.8	104
86	A review of carbon dots and their composite materials for electrochemical energy technologies. , 2021, 3, 795-826.		77
87	Recent Progress in Amorphous Carbonâ€Based Materials for Anodes of Sodiumâ€Ion Batteries: Synthesis Strategies, Mechanisms, and Performance. ChemSusChem, 2021, 14, 3693-3723.	3.6	32
88	Understanding the Roles of Electrogenerated Co ³⁺ and Co ⁴⁺ in Selectivityâ€Tuned 5â€Hydroxymethylfurfural Oxidation. Angewandte Chemie, 2021, 133, 20698-20705.	1.6	25
89	Understanding the Roles of Electrogenerated Co ³⁺ and Co ⁴⁺ in Selectivityâ€Tuned 5â€Hydroxymethylfurfural Oxidation. Angewandte Chemie - International Edition, 2021, 60, 20535-20542.	7.2	121
90	Wide Working Temperature Range Rechargeable Lithium–Sulfur Batteries: A Critical Review. Advanced Functional Materials, 2021, 31, 2107136.	7.8	43

#	Article	IF	CITATIONS
91	Controllable Heterojunctions with a Semicoherent Phase Boundary Boosting the Potassium Storage of CoSe ₂ /FeSe ₂ (Adv. Mater. 37/2021). Advanced Materials, 2021, 33, 2170288.	11.1	2
92	Boosting Oxygen Reduction Catalysis Through Electronic Reconfiguration of Fe–N–C Induced by P Doping. Electrocatalysis, 2021, 12, 747-758.	1.5	6
93	Sodium Superionic Conductors (NASICONs) as Cathode Materials for Sodium-Ion Batteries. Electrochemical Energy Reviews, 2021, 4, 793-823.	13.1	59
94	Boosting carbon monoxide production during CO2 reduction reaction via Cu-Sb2O3 interface cooperation. Journal of Colloid and Interface Science, 2021, 601, 661-668.	5.0	10
95	Electrochemical reduction of carbon dioxide (CO ₂): bismuth-based electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 13770-13803.	5.2	55
96	Vacancy-engineered MoO ₃ and Na ⁺ -preinserted MnO ₂ <i>in situ</i> grown N-doped graphene nanotubes as electrode materials for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2021, 9, 20794-20806.	5.2	15
97	Perspectives for Single-Atom Nanozymes: Advanced Synthesis, Functional Mechanisms, and Biomedical Applications. Analytical Chemistry, 2021, 93, 1221-1231.	3.2	86
98	High-rate performance aqueous-based supercapacitors at â^'30 °C driven by novel 1D Ni(OH) ₂ nanorods and a two-solute electrolyte. Journal of Materials Chemistry A, 2021, 9, 23860-23872.	5.2	21
99	Realizing Spherical Lithium Deposition by In Situ Formation of a Li ₂ S/Li–Sn Alloy Mixed Layer on Carbon Paper for Stable and Safe Li Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 48828-48837.	4.0	10
100	UnravelingÂthe Enhanced Kinetics of Sr ₂ Fe ₁₊ <i>_x</i> Mo _{1â€} <i>_x</i> O _{6â€Î′<!--<br-->Electrocatalysts for Highâ€Performance Solid Oxide Cells. Advanced Energy Materials, 2021, 11, 2102845.}	sub0.2	41
101	Facile template-free synthesis of mesoporous cobalt sulfide for high-performance hybrid supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 28663.	1.1	0
102	Borohydride Substitution Effects of Li ₆ PS ₅ Cl Solid Electrolyte. ACS Applied Energy Materials, 2021, 4, 12079-12083.	2.5	9
103	Dual Enhancement of Sodium Storage Induced through Both S-Compositing and Co-Doping Strategies. ACS Applied Materials & Interfaces, 2021, 13, 54043-54058.	4.0	3
104	Coupling efficient biomass upgrading with H ₂ production <i>via</i> bifunctional Cu _x S@NiCo-LDH core–shell nanoarray electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 1138-1146.	5.2	132
105	Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 260, 118196.	10.8	142
106	Novel Bi, BiSn, Bi ₂ Sn, Bi ₃ Sn, and Bi ₄ Sn Catalysts for Efficient Electroreduction of CO ₂ to Formic Acid. Industrial & Engineering Chemistry Research, 2020, 59, 6806-6814.	1.8	32
107	Coâ	2.4	38
108	Structural phase transformation from SnS ₂ /reduced graphene oxide to SnS/sulfur-doped graphene and its lithium storage properties. Nanoscale, 2020, 12, 1697-1706.	2.8	29

#	Article	IF	CITATIONS
109	Facile synthesis of bimetallic zeolite imidazolate framework with enhanced lithium storage performance. Ionics, 2020, 26, 2107-2115.	1.2	5
110	Self-supported GaN nanowires with cation-defects, lattice distortion, and abundant active sites for high-rate lithium-ion storage. Nano Energy, 2020, 68, 104376.	8.2	33
111	Interfacial Electronic Modulation of Multishelled CoP Hollow Spheres via Surface Reconstruction for High-Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 309-318.	2.5	26
112	A Multifunctional Separator Enables Safe and Durable Lithium/Magnesium–Sulfur Batteries under Elevated Temperature. Advanced Energy Materials, 2020, 10, 1902023.	10.2	51
113	Rechargeable Zn–MnO ₂ batteries: advances, challenges and perspectives. Nanotechnology, 2020, 31, 122001.	1.3	76
114	Improved electrochemical reversibility of Zn plating/stripping: a promising approach to suppress water-induced issues through the formation of H-bonding. Materials Today Energy, 2020, 18, 100563.	2.5	82
115	Enhanced oxygen reduction kinetics by a porous heterostructured cathode for intermediate temperature solid oxide fuel cells. Energy and AI, 2020, 2, 100027.	5.8	17
116	Sb ₂ S ₃ @SnO ₂ hetero-nanocomposite as high-performance anode material for sodium-ion battery. International Journal of Green Energy, 2020, 17, 1044-1050.	2.1	5
117	Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 22467-22487.	5.2	92
118	A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. Journal of Materials Chemistry A, 2020, 8, 20849-20869.	5.2	88
119	Ni2P nanoparticle-incorporated reduced graphene oxide & carbon nanotubes to form flexible free-standing intertwining network film anodes for long-life sodium-ion storage. Journal of Materials Science, 2020, 55, 14491-14500.	1.7	5
120	Sequenceâ€Defined Peptoids with OH and COOH GroupsÂAs Binders to Reduce Cracks of Si Nanoparticles of Lithiumâ€lon Batteries. Advanced Science, 2020, 7, 2000749.	5.6	38
121	Directly visualizing and exploring local heterointerface with high electro-catalytic activity. Nano Energy, 2020, 78, 105236.	8.2	31
122	Progress in energy-related graphyne-based materials: advanced synthesis, functional mechanisms and applications. Journal of Materials Chemistry A, 2020, 8, 21408-21433.	5.2	41
123	Novel MOF-Derived Nickel Nitride as High-Performance Bifunctional Electrocatalysts for Hydrogen Evolution and Urea Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 7414-7422.	3.2	147
124	Improvement of cycling stability and high-temperature performance of Li[Ni0.80Co0.15Al0.05]O2 cathode by thin-layer AlF3 coating. Journal of Materials Science: Materials in Electronics, 2020, 31, 11141-11149.	1.1	1
125	Optimizing Li2O-2B2O3 coating layer on LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material for high-performance lithium-ion batteries. International Journal of Green Energy, 2020, 17, 447-455.	2.1	14
126	A Review of Composite/Hybrid Electrocatalysts and Photocatalysts for Nitrogen Reduction Reactions: Advanced Materials, Mechanisms, Challenges and Perspectives. Electrochemical Energy Reviews, 2020, 3, 506-540.	13.1	35

#	Article	IF	CITATIONS
127	Ir Cluster-Decorated Carbon Composite as Bifunctional Electrocatalysts for Acidic Stable Overall Water Splitting. Journal of the Electrochemical Society, 2020, 167, 104511.	1.3	18
128	Sodiumâ€lon Batteries: Recent Progress in Advanced Organic Electrode Materials for Sodiumâ€lon Batteries: Synthesis, Mechanisms, Challenges and Perspectives (Adv. Funct. Mater. 11/2020). Advanced Functional Materials, 2020, 30, 2070071.	7.8	12
129	Ionic Conductive Interface Boosting High Performance LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ for Lithium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3242-3252.	2.5	24
130	Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chemical Engineering Journal, 2020, 402, 126181.	6.6	40
131	Size-tunable SnS2 nanoparticles assembled on graphene as anodes for high performance lithium/sodium-ion batteries. Electrochimica Acta, 2020, 354, 136730.	2.6	36
132	Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives. ChemSusChem, 2020, 13, 2160-2185.	3.6	121
133	Improved low-temperature performance of surface modified lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium ion batteries. Solid State Ionics, 2020, 347, 115245.	1.3	15
134	Synthesis of N doped NiZnCu-layered double hydroxides with reduced graphene oxide on nickel foam as versatile electrocatalysts for hydrogen production in hybrid-water electrolysis. Journal of Power Sources, 2020, 453, 227872.	4.0	73
135	Pyrolyzed Co-N _x /C Electrocatalysts Supported on Different Carbon Materials for Oxygen Reduction Reaction in Neutral Solution. Journal of the Electrochemical Society, 2020, 167, 024509.	1.3	4
136	Magnesium–Sulfur Batteries: A Multifunctional Separator Enables Safe and Durable Lithium/Magnesium–Sulfur Batteries under Elevated Temperature (Adv. Energy Mater. 5/2020). Advanced Energy Materials, 2020, 10, 2070019.	10.2	1
137	Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Znâ€Based Batteries. Advanced Functional Materials, 2020, 30, 1908528.	7.8	523
138	Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating. Energy Storage Materials, 2020, 28, 17-26.	9.5	47
139	Ultrastable Li-ion battery anodes by encapsulating SnS nanoparticles in sulfur-doped graphene bubble films. Nanoscale, 2020, 12, 3941-3949.	2.8	36
140	Recent Progress in Advanced Organic Electrode Materials for Sodiumâ€Ion Batteries: Synthesis, Mechanisms, Challenges and Perspectives. Advanced Functional Materials, 2020, 30, 1908445.	7.8	173
141	Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries. Nano Energy, 2020, 70, 104504.	8.2	61
142	FeP Quantum Dots Confined in Carbonâ€Nanotubeâ€Grafted Pâ€Doped Carbon Octahedra for Highâ€Rate Sodium Storage and Fullâ€Cell Applications. Advanced Functional Materials, 2020, 30, 1909283.	7.8	143
143	Synthesis of CoS ₂ Nanoparticles/Nitrogenâ€Doped Graphitic Carbon/Carbon Nanotubes Composite as an Advanced Anode for Sodiumâ€ion Batteries. ChemElectroChem, 2020, 7, 2752-2761.	1.7	12
144	A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 4996-5048.	5.2	108

#	Article	IF	CITATIONS
145	MOF-deviated zinc-nickel–cobalt ZIF-67 electrode material for high-performance symmetrical coin-shaped supercapacitors. Journal of Colloid and Interface Science, 2020, 574, 140-151.	5.0	56
146	Charge redistribution within platinum–nitrogen coordination structure to boost hydrogen evolution. Nano Energy, 2020, 73, 104739.	8.2	55
147	Uniform Li Deposition Sites Provided by Atomic Layer Deposition for the Dendrite-free Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 19530-19538.	4.0	30
148	Highly efficient and durable aqueous electrocatalytic reduction of CO ₂ to HCOOH with a novel bismuth–MOF: experimental and DFT studies. Journal of Materials Chemistry A, 2020, 8, 9776-9787.	5.2	73
149	ZnO Interface Modified LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Toward Boosting Lithium Storage. Energy and Environmental Materials, 2020, 3, 522-528.	7.3	24
150	Novel Fe ₃ C Nanoparticles Encapsulated in Bamboo-Like Nitrogen-Doped Carbon Nanotubes as High-Performance Electrocatalyst for Zinc-Air Battery. Journal of the Electrochemical Society, 2020, 167, 060526.	1.3	6
151	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Advanced Energy Materials, 2020, 10, 1903977.	10.2	309
152	Modification based on primary particle level to improve the electrochemical performance of SiO -based anode materials. Journal of Power Sources, 2020, 467, 228301.	4.0	33
153	MoP@NiCo-LDH on nickel foam as bifunctional electrocatalyst for high efficiency water and urea–water electrolysis. Journal of Materials Chemistry A, 2020, 8, 18106-18116.	5.2	106
154	Sb ₂ S ₃ @YP Nanostructured Anode Material Synthesized by a Novel Vaporization-Condensation Method for Long Cycle-Life Sodium-Ion Battery. Journal of the Electrochemical Society, 2020, 167, 140531.	1.3	10
155	Design and fabrication of nonâ€noble metal catalystâ€based airâ€cathodes for metalâ€air battery. Canadian Journal of Chemical Engineering, 2019, 97, 2984-2993.	0.9	17
156	Polyethylene Glycol–Na ⁺ Interface of Vanadium Hexacyanoferrate Cathode for Highly Stable Rechargeable Aqueous Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 28762-28768.	4.0	41
157	Sandwich-like SnS ₂ /Graphene/SnS ₂ with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials. ACS Nano, 2019, 13, 9100-9111.	7.3	276
158	Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy and Environmental Science, 2019, 12, 2890-2923.	15.6	317
159	MOF-Derived Co3O4 Polyhedrons as Efficient Polysulfides Barrier on Polyimide Separators for High Temperature Lithium–sulfur Batteries. Nanomaterials, 2019, 9, 1574.	1.9	30
160	Preparation and electrochemical properties of core-shelled silicon–carbon composites as anode materials for lithium-ion batteries. Journal of Applied Electrochemistry, 2019, 49, 1123-1132.	1.5	7
161	Novel Composite Electrode of the Reduced Graphene Oxide Nanosheets with Gold Nanoparticles Modified by Glucose Oxidase for Electrochemical Reactions. Catalysts, 2019, 9, 764.	1.6	4
162	Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochemical Energy Reviews, 2019, 2, 518-538.	13.1	176

#	Article	IF	CITATIONS
163	Metal-ion bridged high conductive RGO-M-MoS2 (M = Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) composite electrocatalysts for photo-assisted hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 129-139.	10.8	63
164	Sacrificial template induced interconnected bubble-like N-doped carbon nanofoam as a pH-universal electrocatalyst for an oxygen reduction reaction. Inorganic Chemistry Frontiers, 2019, 6, 621-629.	3.0	4
165	Methylsulfonylmethane-Based Deep Eutectic Solvent as a New Type of Green Electrolyte for a High-Energy-Density Aqueous Lithium-Ion Battery. ACS Energy Letters, 2019, 4, 1419-1426.	8.8	87
166	Controlling crystal orientation in multilayered heterostructures toward high electro-catalytic activity for oxygen reduction reaction. Nano Energy, 2019, 62, 521-529.	8.2	35
167	Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors. Frontiers of Materials Science, 2019, 13, 133-144.	1.1	13
168	Ni ₃ N/NF as Bifunctional Catalysts for Both Hydrogen Generation and Urea Decomposition. ACS Applied Materials & Interfaces, 2019, 11, 13168-13175.	4.0	147
169	Ultra-high performance of Li/Na ion batteries using N/O dual dopant porous hollow carbon nanocapsules as an anode. Journal of Materials Chemistry A, 2019, 7, 11117-11126.	5.2	42
170	Highâ€Indexed PtNi Alloy Skin Spiraled on Pd Nanowires for Highly Efficient Oxygen Reduction Reaction Catalysis. Small, 2019, 15, e1900288.	5.2	73
171	Comparative analysis of electrochemical performances and capacity degrading behaviors in lithium-ion capacitors based on different anodic materials. Ionics, 2019, 25, 3277-3285.	1.2	7
172	Surface-Coated LiNi0.8Co0.1Mn0.1O2 (NCM811) Cathode Materials by Al2O3, ZrO2, and Li2O-2B2O3 Thin-Layers for Improving the Performance of Lithium Ion Batteries. Frontiers in Materials, 2019, 6, .	1.2	61
173	Nitrogen-Doped Hierarchical Porous Hollow Carbon Microspheres for Electrochemical Energy Conversion. Russian Journal of Electrochemistry, 2019, 55, 1098-1109.	0.3	6
174	An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie, 2019, 131, 2648-2652.	1.6	116
175	An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 2622-2626.	7.2	494
176	Distinguished Zn,Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air Batteries. Nano Energy, 2019, 58, 277-283.	8.2	204
177	N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Materials, 2019, 20, 225-233.	9.5	159
178	ZnO@TiO2 heterostructure arrays/carbon cloth by charge redistribution enhances performance in flexible anode for Li ion batteries. Electrochimica Acta, 2019, 295, 107-112.	2.6	67
179	Novel electrochemical half-cell design and fabrication for performance analysis of metal-air battery air-cathodes. International Journal of Green Energy, 2019, 16, 236-241.	2.1	8
180	Largely Increased Lithium Storage Ability of Mangnese Oxide through a Continuous Electronic Structure Modulation and Elevated Capacitive Contribution. ACS Sustainable Chemistry and Engineering, 2019, 7, 740-747.	3.2	18

#	Article	IF	CITATIONS
181	Non-noble Iron Group (Fe, Co, Ni)-Based Oxide Electrocatalysts for Aqueous Zinc–Air Batteries: Recent Progress, Challenges, and Perspectives. Organometallics, 2019, 38, 1186-1199.	1.1	51
182	High-Temperature Electrochemical Process of CO2 Conversion with SOCs 6. , 2019, , 187-201.		0
183	A Review of Carbon-Composited Materials as Air-Electrode Bifunctional Electrocatalysts for Metal–Air Batteries. Electrochemical Energy Reviews, 2018, 1, 1-34.	13.1	163
184	Nâ€Đoping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance Lithium/Sodium Storage. Advanced Functional Materials, 2018, 28, 1706294.	7.8	392
185	Effect of Surface Modification with Spinel NiFe ₂ O ₄ on Enhanced Cyclic Stability of LiMn ₂ O ₄ Cathode Material in Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 570-578.	3.2	35
186	A simple and fast method to determine water content in biodiesel by electrochemical impedance spectroscopy. Talanta, 2018, 179, 753-759.	2.9	27
187	Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy and Environmental Science, 2018, 11, 3075-3095.	15.6	324
188	Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. Journal of Materials Chemistry A, 2018, 6, 20564-20620.	5.2	295
189	Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochemical Energy Reviews, 2018, 1, 483-530.	13.1	285
190	Oxygen reduction kinetic enhancements of intermediate-temperature SOFC cathodes with novel Nd0.5Sr0.5CoO3-Î′ Nd0.8Sr1.2CoO4±Î′ heterointerfaces. Nano Energy, 2018, 51, 711-720.	8.2	60
191	Core/shell Fe3O4@Fe encapsulated in N-doped three-dimensional carbon architecture as anode material for lithium-ion batteries. International Journal of Hydrogen Energy, 2018, 43, 15358-15364.	3.8	7
192	Energy storage through CO2 electroreduction: A brief review of advanced Sn-based electrocatalysts and electrodes. Journal of CO2 Utilization, 2018, 27, 48-59.	3.3	58
193	Crossed PtCoCu Alloy Nanocrystals with Highâ€index Facets as Highly Active Catalyst for Methanol Oxidation Reaction. Advanced Materials Interfaces, 2018, 5, 1800297.	1.9	19
194	Superior performance of Na ₇ V ₄ (P ₂ O ₇) ₄ PO ₄ in sodium ion batteries. RSC Advances, 2018, 8, 21224-21228.	1.7	26
195	Metal Sulfides As Catalysts for the Electrochemical Reduction of Carbon Dioxide. ECS Meeting Abstracts, 2018, , .	0.0	0
196	IrNi nanoparticle-decorated flower-shaped NiCo2O4 nanostructures: controllable synthesis and enhanced electrochemical activity for oxygen evolution reaction. Science China Materials, 2017, 60, 119-130.	3.5	32
197	A review of high temperature co-electrolysis of H ₂ O and CO ₂ to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chemical Society Reviews, 2017, 46, 1427-1463.	18.7	515
198	Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 2450-2458.	15.6	246

#	Article	IF	CITATIONS
199	Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy, 2017, 40, 512-539.	8.2	221
200	A New Strategy to Stabilize Capacity and Insight into the Interface Behavior in Electrochemical Reaction of LiNi _{0.5} Mn _{1.5} O ₄ /Graphite System for High-Voltage Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 33274-33287.	4.0	31
201	N,B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy, 2017, 42, 334-340.	8.2	238
202	Facile synthesis of NiCo2O4 nanosphere-carbon nanotubes hybrid as an efficient bifunctional electrocatalyst for rechargeable Zn–air batteries. International Journal of Hydrogen Energy, 2016, 41, 9211-9218.	3.8	71
203	Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel. Applied Energy, 2016, 175, 536-544.	5.1	82
204	Rational Design and Synthesis of SnO _{<i>x</i>} Electrocatalysts with Coralline Structure for Highly Improved Aqueous CO ₂ Reduction to Formate. ChemElectroChem, 2016, 3, 1618-1628.	1.7	56
205	Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery. Scientific Reports, 2016, 6, 33590.	1.6	57
206	Novel Ag@C nanocables supported Pd anodes and its implication in energy conversion using direct liquid fuel cells. Applied Energy, 2016, 175, 429-434.	5.1	15
207	PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. Coordination Chemistry Reviews, 2016, 315, 153-177.	9.5	110
208	Facile synthesis of silver@carbon nanocable-supported platinum nanoparticles as high-performing electrocatalysts for glycerol oxidation in direct glycerol fuel cells. Green Chemistry, 2016, 18, 386-391.	4.6	23
209	Novel Flower-like Nickel Sulfide as an Efficient Electrocatalyst for Non-aqueous Lithium-Air Batteries. Scientific Reports, 2015, 5, 18199.	1.6	57
210	Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage. Scientific Reports, 2015, 5, 13310.	1.6	34
211	A Novel Half-Cell Design and Fabrication for an In-Situ Evaluation of Pem Fuel Cell Electrocatalysts. International Journal of Green Energy, 2014, 11, 1-11.	2.1	8
212	Electrocatalysts and Catalyst Layers for Oxygen Reduction Reaction. , 2014, , 67-132.		15
213	Electrochemistry: Development and Simulation of Sulfur-doped Graphene Supported Platinum with Exemplary Stability and Activity Towards Oxygen Reduction (Adv. Funct. Mater. 27/2014). Advanced Functional Materials, 2014, 24, 4324-4324.	7.8	4
214	Electrochemical Oxygen Reduction Reaction. , 2014, , 133-170.		26
215	Electrode Kinetics ofÂElectron-Transfer Reaction and Reactant Transport in Electrolyte Solution. , 2014, , 33-65.		5
216	Oxygen Solubility, Diffusion Coefficient, and Solution Viscosity. , 2014, , 1-31.		79

#	Article	IF	CITATIONS
217	Applications of RDE and RRDE Methods in Oxygen Reduction Reaction. , 2014, , 231-277.		11
218	N,N′-Bis(salicylidene)ethylenediamine as a nitrogen-rich precursor to synthesize electrocatalysts with high methanol-tolerance for polymer electrolyte membrane fuel cell oxygen reduction reaction. Journal of Power Sources, 2014, 260, 349-356.	4.0	8
219	Non-noble Fe–NX electrocatalysts supported on the reduced graphene oxide for oxygen reduction reaction. Carbon, 2014, 76, 386-400.	5.4	77
220	Experimental identification of the active sites in pyrolyzed carbon-supported cobalt–polypyrrole–4-toluenesulfinic acid as electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2014, 255, 76-84.	4.0	43
221	A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy and Environmental Science, 2014, 7, 1564.	15.6	996
222	Highly active Pt-on-Au catalysts for methanol oxidation in alkaline media involving a synergistic interaction between Pt and Au. Electrochimica Acta, 2014, 123, 309-316.	2.6	22
223	Development and Simulation of Sulfurâ€doped Graphene Supported Platinum with Exemplary Stability and Activity Towards Oxygen Reduction. Advanced Functional Materials, 2014, 24, 4325-4336.	7.8	214
224	Kinetics of oxygen reduction reaction on three different Pt surfaces of Pt/C catalyst analyzed by rotating ring-disk electrode in acidic solution. Journal of Power Sources, 2014, 255, 242-250.	4.0	44
225	A Review of Grapheneâ€Based Nanostructural Materials for Both Catalyst Supports and Metalâ€Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. Advanced Energy Materials, 2014, 4, 1301523.	10.2	416
226	A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews, 2014, 43, 631-675.	18.7	2,360
227	Formation of Cu nanostructured electrode surfaces by an annealing–electroreduction procedure to achieve high-efficiency CO2 electroreduction. Electrochemistry Communications, 2014, 38, 8-11.	2.3	71
228	Ta and Nb co-doped TiO ₂ and its carbon-hybrid materials for supporting Pt–Pd alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 12681-12685.	5.2	45
229	Electrocatalytic activity and stability of carbon nanotubes-supported Pt-on-Au, Pd-on-Au, Pt-on-Pd-on-Au, Pt-on-Pd, and Pd-on-Pt catalysts for methanol oxidation reaction. Electrochimica Acta, 2014, 148, 1-7.	2.6	16
230	Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors. Applied Energy, 2014, 134, 439-445.	5.1	99
231	Simultaneous formation of nitrogen and sulfur-doped transition metal catalysts for oxygen reduction reaction through pyrolyzing carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt. Journal of Power Sources, 2014, 266, 88-98.	4.0	41
232	Experimental and modeling study on charge storage/transfer mechanism of graphene-based supercapacitors. Journal of Power Sources, 2014, 268, 604-609.	4.0	14
233	Synthesis of novel mesoporous carbon spheres and their supported Fe-based electrocatalysts for PEM fuel cell oxygen reduction reaction. Electrochimica Acta, 2013, 108, 480-485.	2.6	39
234	Hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) for alkaline fuel cell applications: Effect of molecular weight. Electrochimica Acta, 2013, 111, 351-358.	2.6	35

#	Article	IF	CITATIONS
235	Mesoporous carbons supported non-noble metal Fe–N X electrocatalysts for PEM fuel cell oxygen reduction reaction. Journal of Applied Electrochemistry, 2013, 43, 159-169.	1.5	78
236	Understanding the effects of backpressure on PEM fuel cell reactions and performance. Journal of Electroanalytical Chemistry, 2013, 688, 130-136.	1.9	46
237	Effect of template size on the synthesis of mesoporous carbon spheres and their supported Fe-based ORR electrocatalysts. Electrochimica Acta, 2013, 108, 814-819.	2.6	28
238	High crystallinity binuclear iron phthalocyanine catalyst with enhanced performance for oxygen reduction reaction. Journal of Power Sources, 2013, 231, 91-96.	4.0	30
239	Anion conducting poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) membranes with high durable alkaline stability for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2013, 237, 1-4.	4.0	43
240	Synthesis, characterization and evaluation of unsupported porous NiS2 sub-micrometer spheres as a potential hydrodesulfurization catalyst. Applied Catalysis A: General, 2013, 450, 230-236.	2.2	28
241	Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent. Electrochimica Acta, 2013, 90, 542-549.	2.6	86
242	Alkaline polymer electrolyte membranes for fuel cell applications. Chemical Society Reviews, 2013, 42, 5768.	18.7	540
243	Theoretical Study of Oxygen Reduction Reaction Catalysts: From Pt to Non-precious Metal Catalysts. Lecture Notes in Energy, 2013, , 339-373.	0.2	2
244	Nickel, cobalt, and manganese oxide composite as an electrode material for electrochemical supercapacitors. Ionics, 2013, 19, 689-695.	1.2	29
245	Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction. Applied Energy, 2013, 103, 507-513.	5.1	50
246	Nanomaterialsâ€ s upported Pt catalysts for proton exchange membrane fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 31-51.	1.9	23
247	Synthesis of Pd and Nb–doped TiO2 composite supports and their corresponding Pt–Pd alloy catalysts by a two-step procedure for the oxygen reduction reaction. Journal of Power Sources, 2013, 221, 232-241.	4.0	25
248	Electrochemical Behavior of Ruthenium-Hexacyanoferrate Modified Glassy Carbon Electrode and Catalytic Activity towards Ethanol Electrooxidation. Journal of the Brazilian Chemical Society, 2013, ,	0.6	1
249	A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41, 797-828.	18.7	7,829
250	Using pyridine as nitrogen-rich precursor to synthesize Co-N-S/C non-noble metal electrocatalysts for oxygen reduction reaction. Applied Catalysis B: Environmental, 2012, 125, 197-205.	10.8	50
251	Nickel and cobalt oxide composite as a possible electrode material for electrochemical supercapacitors. Journal of Power Sources, 2012, 217, 554-561.	4.0	48
252	Nb-doped TiO2/carbon composite supports synthesized by ultrasonic spray pyrolysis for proton exchange membrane (PEM) fuel cell catalysts. Journal of Power Sources, 2012, 220, 1-9.	4.0	22

#	Article	IF	CITATIONS
253	Highly active electrocatalysts for oxygen reduction from carbon-supported copper-phthalocyanine synthesized by high temperature treatment. International Journal of Hydrogen Energy, 2012, 37, 14103-14113.	3.8	82
254	Nano-architecture and material designs for water splitting photoelectrodes. Chemical Society Reviews, 2012, 41, 5654.	18.7	483
255	Synthesis of hierarchical structured porous MoS ₂ /SiO ₂ microspheres by ultrasonic spray pyrolysis. Canadian Journal of Chemical Engineering, 2012, 90, 330-335.	0.9	14
256	Synthesis of conductive rutile-phased Nb _{0.06} Ti _{0.94} O ₂ and its supported Pt electrocatalysts (Pt/Nb _{0.06} Ti _{0.94} O ₂) for the oxygenreduction reaction. Dalton Transactions, 2012, 41, 1187-1194.	1.6	40
257	Anodic stripping voltammetry coupled with design of experiments for simultaneous determination of Zn+2, Cu+2, Pb+2, and Cd+2 in gasoline. Fuel, 2012, 91, 26-32.	3.4	24
258	A review of electrochemical desulfurization technologies for fossil fuels. Fuel Processing Technology, 2012, 98, 30-38.	3.7	94
259	Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction. Electrochimica Acta, 2012, 59, 538-547.	2.6	81
260	Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochimica Acta, 2012, 60, 428-436.	2.6	189
261	Nanocrystalline tungsten carbide (WC) synthesis/characterization and its possible application as a PEM fuel cell catalyst support. Electrochimica Acta, 2012, 61, 198-206.	2.6	55
262	Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells. Electrochimica Acta, 2012, 69, 397-405.	2.6	126
263	Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells. Electrochimica Acta, 2012, 77, 1-7.	2.6	47
264	Carbon–Nb0.07Ti0.93O2 composite supported Pt–Pd electrocatalysts for PEM fuel cell oxygen reduction reaction. Electrochimica Acta, 2012, 75, 220-228.	2.6	35
265	Effects of synthesis condition on formation of desired crystal structures of doped-TiO2/carbon composite supports for ORR electrocatalysts. Electrochimica Acta, 2012, 77, 225-231.	2.6	19
266	Application of a composite structure of carbon nanoparticles and Nb–TiO2 nanofibers as electrocatalyst support for PEM fuel cells. Journal of Power Sources, 2012, 210, 15-20.	4.0	27
267	Carbon-Supported Fe–N _{<i>x</i>} Catalysts Synthesized by Pyrolysis of the Fe(II)–2,3,5,6-Tetra(2-pyridyl)pyrazine Complex: Structure, Electrochemical Properties, and Oxygen Reduction Reaction Activity. Journal of Physical Chemistry C, 2011, 115, 12929-12940.	1.5	88
268	Theoretical Study of Possible Active Site Structures in Cobalt- Polypyrrole Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2011, 115, 16672-16680.	1.5	74
269	Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chemical Reviews, 2011, 111, 7625-7651.	23.0	741
270	Nitrogen-doped graphene nanosheet-supported non-precious iron nitride nanoparticles as an efficient electrocatalyst for oxygen reduction. RSC Advances, 2011, 1, 1349.	1.7	91

#	Article	IF	CITATIONS
271	The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chemical Communications, 2011, 47, 6951.	2.2	580
272	Formic Acid Tolerant Ir-Based Electrocatalysts for Oxygen Reduction Reaction. International Journal of Green Energy, 2011, 8, 295-305.	2.1	7
273	A novel CO-tolerant PtRu core–shell structured electrocatalyst with Ru rich in core and Pt rich in shell for hydrogen oxidation reaction and its implication in proton exchange membrane fuel cell. Journal of Power Sources, 2011, 196, 9117-9123.	4.0	44
274	Carbon incorporated FeN/C electrocatalyst for oxygen reduction enhancement in direct methanol fuel cells: X-ray absorption approach to local structures. Electrochimica Acta, 2011, 56, 8734-8738.	2.6	25
275	A review on non-precious metal electrocatalysts for PEM fuel cells. Energy and Environmental Science, 2011, 4, 3167.	15.6	1,651
276	STEM HAADF Tomography of Molybdenum Disulfide with Mesoporous Structure. ChemCatChem, 2011, 3, 999-1003.	1.8	10
277	Fe–N /C electrocatalysts synthesized by pyrolysis of Fe(II)–2,3,5,6-tetra(2-pyridyl)pyrazine complex for PEM fuel cell oxygen reduction reaction. Electrochimica Acta, 2011, 56, 4744-4752.	2.6	51
278	Optimizing catalyst loading in non-noble metal electrocatalyst layer to improve oxygen reduction reaction activity. Electrochemistry Communications, 2011, 13, 447-449.	2.3	30
279	Improved ORR activity of non-noble metal electrocatalysts by increasing ligand and metal ratio in synthetic complex precursors. Electrochimica Acta, 2011, 56, 5488-5492.	2.6	25
280	Electrocatalytic Activities of La0.6Ca0.4CoO3 and La0.6Ca0.4CoO3-Carbon Composites Toward the Oxygen Reduction Reaction in Concentrated Alkaline Electrolytes. Journal of the Electrochemical Society, 2011, 158, A597.	1.3	71
281	Heat-treated cobalt–tripyridyl triazine (Co–TPTZ) electrocatalysts for oxygen reduction reaction in acidic medium. Electrochimica Acta, 2010, 55, 4403-4411.	2.6	66
282	Synthesis of carbon-supported binary FeCo–N non-noble metal electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2010, 55, 7346-7353.	2.6	83
283	Hydrazine oxidation catalyzed by ruthenium hexacyanoferrate-modified glassy carbon electrode. Journal of Applied Electrochemistry, 2010, 40, 375-382.	1.5	18
284	Pt nanoparticles deposited on TiO2 based nanofibers: Electrochemical stability and oxygen reduction activity. Journal of Power Sources, 2010, 195, 3105-3110.	4.0	89
285	Durability of PEM fuel cell cathode in the presence of Fe3+ and Al3+. Journal of Power Sources, 2010, 195, 8089-8093.	4.0	65
286	Proton conductivity enhancement by nanostructural control of sulphonated poly (ether ether) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 14 12
287	PEM fuel cell cathode contamination in the presence of cobalt ion (Co2+). Electrochimica Acta, 2010, 55, 5823-5830	2.6	37

#	Article	IF	CITATIONS
289	Effect of Co2+ on oxygen reduction reaction catalyzed by Pt catalyst, and its implications for fuel cell contamination. Electrochimica Acta, 2010, 55, 2622-2628.	2.6	14
290	Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries. Electrochimica Acta, 2010, 55, 5891-5898.	2.6	153
291	Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nature Chemistry, 2010, 2, 286-293.	6.6	448
292	Electrochemical Impedance Spectroscopy in PEM Fuel Cells. , 2010, , .		210
293	Effects of Hardware Design and Operation Conditions on PEM Fuel Cell Water Flooding. International Journal of Green Energy, 2010, 7, 461-474.	2.1	33
294	Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chemical Society Reviews, 2010, 39, 2184.	18.7	1,037
295	Electronic Conductivity and Stability of Doped Titania (Ti _{1â^'<i>X</i>} M <i>_X</i> O ₂ , M = Nb, Ru, and Ta)—A Density Functional Theory-Based Comparison. Journal of Physical Chemistry C, 2010, 114, 13162-13167.	1.5	26
296	Effect of Operating Backpressure on PEM Fuel Cell Performance. ECS Transactions, 2009, 19, 65-76.	0.3	25
297	PEM Fuel Cell Contamination: Effects of Operating Conditions on Toluene-Induced Cathode Degradation. Journal of the Electrochemical Society, 2009, 156, B252.	1.3	26
298	Implantation of Nafion® ionomer into polyvinyl alcohol/chitosan composites to form novel proton-conducting membranes for direct methanol fuel cells. Journal of Power Sources, 2009, 194, 730-736.	4.0	45
299	Facile synthesis, spectroscopy and electrochemical activity of two substituted iron phthalocyanines as oxygen reduction catalysts in an acidic environment. Electrochimica Acta, 2009, 54, 3098-3102.	2.6	48
300	Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes: preparation and catalytic activity towards methanol/ethanol oxidation. Journal of Applied Electrochemistry, 2009, 39, 55-64.	1.5	54
301	Canada–USA PEM Fuel Cell Network Research Workshop: Report. Fuel Cells Bulletin, 2009, 2009, 12-16.	0.7	6
302	A novel single electrode supported direct methanol fuel cell. Electrochemistry Communications, 2009, 11, 1530-1534.	2.3	16
303	Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts. Electrochimica Acta, 2009, 54, 4704-4711.	2.6	289
304	Synthesis of a highly active carbon-supported Ir–V/C catalyst for the hydrogen oxidation reaction in PEMFC. Electrochimica Acta, 2009, 54, 5614-5620.	2.6	19
305	Fe loading of a carbon-supported Fe–N electrocatalyst and its effect on the oxygen reduction reaction. Electrochimica Acta, 2009, 54, 6631-6636.	2.6	68
306	A general model for air-side proton exchange membrane fuel cell contamination. Journal of Power Sources, 2009, 186, 435-445.	4.0	18

#	Article	IF	CITATIONS
307	Control of variable power conditions for a membraneless direct methanol fuel cell. Journal of Power Sources, 2009, 194, 991-996.	4.0	21
308	EIS-assisted performance analysis of non-noble metal electrocatalyst (Fe–N/C)-based PEM fuel cells in the temperature range of 23–80°C. Electrochimica Acta, 2009, 54, 1737-1743.	2.6	28
309	High activity PtRu/C catalysts synthesized by a modified impregnation method for methanol electro-oxidation. Electrochimica Acta, 2009, 54, 7274-7279.	2.6	44
310	Ultrasonic spray pyrolyzed iron-polypyrrole mesoporous spheres for fuel celloxygen reduction electrocatalysts. Journal of Materials Chemistry, 2009, 19, 468-470.	6.7	81
311	Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction. Journal of Power Sources, 2008, 177, 296-302.	4.0	78
312	A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources, 2008, 184, 104-119.	4.0	1,263
313	Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochimica Acta, 2008, 53, 6906-6919.	2.6	153
314	A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources, 2008, 178, 103-117.	4.0	847
315	Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells. Journal of Power Sources, 2008, 184, 99-103.	4.0	44
316	Polymer electrolyte membrane fuel cell contamination: Testing and diagnosis of toluene-induced cathode degradation. Journal of Power Sources, 2008, 185, 272-279.	4.0	45
317	Novel approach to membraneless direct methanol fuel cells using advanced 3D anodes. Electrochimica Acta, 2008, 53, 6890-6898.	2.6	28
318	PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures. Electrochimica Acta, 2008, 53, 5315-5321.	2.6	167
319	A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochimica Acta, 2008, 53, 4937-4951.	2.6	1,032
320	Novel carbon-supported Fe-N electrocatalysts synthesized through heat treatment of iron tripyridyl triazine complexes for the PEM fuel cell oxygen reduction reaction. Electrochimica Acta, 2008, 53, 7703-7710.	2.6	130
321	Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques. International Journal of Hydrogen Energy, 2008, 33, 1735-1746.	3.8	282
322	Diagnostic tools in PEM fuel cell research: Part IIPhysical/chemical methods. International Journal of Hydrogen Energy, 2008, 33, 1747-1757.	3.8	105
323	Platinum-based Alloy Catalysts for PEM Fuel Cells. , 2008, , 631-654.		11
324	Catalyst Contamination in PEM Fuel Cells. , 2008, , 331-354.		5

Catalyst Contamination in PEM Fuel Cells. , 2008, , 331-354. 324

#	Article	IF	CITATIONS
325	Non-noble Electrocatalysts for the PEM Fuel Cell Oxygen Reduction Reaction. , 2008, , 715-757.		4
326	Electrocatalytic Oxygen Reduction Reaction. , 2008, , 89-134.		240
327	Catalyst Layer/MEA Performance Evaluation. , 2008, , 965-1002.		3
328	Electrocatalytic H2 Oxidation Reaction. , 2008, , 135-164.		7
329	High-temperature PEM Fuel Cell Catalysts and Catalyst Layers. , 2008, , 861-888.		9
330	Conventional Catalyst Ink, Catalyst Layer and MEA Preparation. , 2008, , 889-916.		6
331	Combinatorial Methods for PEM Fuel Cell Electrocatalysts. , 2008, , 609-630.		1
332	Transient Analysis of Hydrogen Sulfide Contamination on the Performance of a PEM Fuel Cell. Journal of the Electrochemical Society, 2007, 154, 8609.	1.3	39
333	Single PEMFC Design and Validation for High-Temperature MEA Testing and Diagnosis up to 300°C. Electrochemical and Solid-State Letters, 2007, 10, B142.	2.2	20
334	Facile Synthesis of Coâ^'Pt Hollow Sphere Electrocatalyst. Chemistry of Materials, 2007, 19, 1840-1844.	3.2	142
335	Ternary non-noble metal chalcogenide (W–Co–Se) as electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 2007, 9, 1704-1708.	2.3	78
336	PEM fuel cell reaction kinetics in the temperature range of 23–120°C. Electrochimica Acta, 2007, 52, 2552-2561.	2.6	160
337	High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochimica Acta, 2007, 52, 4532-4538.	2.6	120
338	A review of AC impedance modeling and validation in SOFC diagnosis. Electrochimica Acta, 2007, 52, 8144-8164.	2.6	349
339	Low Pt content Pt–Ru–Ir–Sn quaternary catalysts for anodic methanol oxidation in DMFC. Electrochemistry Communications, 2007, 9, 1788-1792.	2.3	48
340	The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd–Co alloy electrocatalysts. Electrochimica Acta, 2007, 52, 3088-3094.	2.6	185
341	PEM fuel cells operated at 0% relative humidity in the temperature range of 23–120°C. Electrochimica Acta, 2007, 52, 5095-5101.	2.6	110
342	Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd–Co alloy electrocatalysts. Electrochimica Acta, 2007, 52, 7964-7971.	2.6	90

#	Article	IF	CITATIONS
343	A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oyxgen reduction. Journal of Power Sources, 2007, 165, 108-113.	4.0	66
344	A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources, 2007, 165, 739-756.	4.0	898
345	Hydrogen crossover in high-temperature PEM fuel cells. Journal of Power Sources, 2007, 167, 25-31.	4.0	141
346	IrxCo1â^'x (x=0.3–1.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction. Journal of Power Sources, 2007, 170, 291-296.	4.0	74
347	A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. Journal of Power Sources, 2007, 173, 891-908.	4.0	398
348	Design and testing of a passive planar three-cell DMFC. Journal of Power Sources, 2007, 164, 287-292.	4.0	45
349	A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 2007, 169, 221-238.	4.0	817
350	Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. Journal of Power Sources, 2007, 173, 556-561.	4.0	106
351	Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200°C. Journal of Power Sources, 2007, 172, 163-171.	4.0	232
352	Temperature Dependent Performance and In Situ AC Impedance of High-Temperature PEM Fuel Cells Using the Nafion-112 Membrane. Journal of the Electrochemical Society, 2006, 153, A2036.	1.3	81
353	Discrepancies in the Measurement of Ionic Conductivity of PEMs Using Two- and Four-Probe AC Impedance Spectroscopy. Journal of the Electrochemical Society, 2006, 153, E173.	1.3	60
354	Synthesis of Ordered Intermetallic PtBi2Nanoparticles for Methanol-Tolerant Catalyst in Oxygen Electroreduction. Chemistry of Materials, 2006, 18, 5746-5749.	3.2	44
355	Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts. Electrochimica Acta, 2006, 51, 1905-1916.	2.6	136
356	Arsenic determination in gasoline by hydride generation atomic absorption spectroscopy combined with a factorial experimental design approach. Fuel, 2006, 85, 2155-2161.	3.4	23
357	Degradation of polymer electrolyte membranes. International Journal of Hydrogen Energy, 2006, 31, 1838-1854.	3.8	448
358	Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. Journal of Power Sources, 2006, 156, 171-182.	4.0	480
359	Liquid methanol concentration sensors for direct methanol fuel cells. Journal of Power Sources, 2006, 159, 626-636.	4.0	73
360	Architecture for portable direct liquid fuel cells. Journal of Power Sources, 2006, 154, 202-213.	4.0	198

#	Article	IF	CITATIONS
361	A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 2006, 155, 95-110.	4.0	1,651
362	Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes. Journal of Power Sources, 2006, 161, 743-752.	4.0	93
363	High temperature PEM fuel cells. Journal of Power Sources, 2006, 160, 872-891.	4.0	914
364	AC impedance diagnosis of a 500W PEM fuel cell stack. Journal of Power Sources, 2006, 161, 929-937.	4.0	103
365	Reversible one-electron electro-reduction of O2 to produce a stable superoxide catalyzed by adsorbed Co(II) hexadecafluoro-phthalocyanine in aqueous alkaline solution. Journal of Electroanalytical Chemistry, 2006, 587, 293-298.	1.9	38
366	Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. Journal of Applied Electrochemistry, 2006, 36, 507-522.	1.5	383
367	AC impedance diagnosis of a 500W PEM fuel cell stack. Journal of Power Sources, 2006, 161, 920-928.	4.0	144
368	Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries. Journal of Power Sources, 2006, 162, 644-650.	4.0	197
369	PEM fuel cell open circuit voltage (OCV) in the temperature range of 23°C to 120°C. Journal of Power Sources, 2006, 163, 532-537.	4.0	190
370	Electrochemical reduction of oxygen and hydrogen peroxide catalyzed by a surface copper(II)–2,4,6-tris(2-piridil)-1,3,5-triazine complex adsorbed on a graphite electrode. Journal of Power Sources, 2005, 142, 10-17.	4.0	57
371	Model for the contamination of fuel cell anode catalyst in the presence of fuel stream impurities. Journal of Power Sources, 2005, 147, 58-71.	4.0	68
372	FTIR and electrochemical observation of water content reduction in a thin Nafion® film induced by an impregnation of metal complex cations. Electrochimica Acta, 2005, 50, 4082-4088.	2.6	11
373	Electro-Oxidation of Carbonate in Aqueous Solution on a Platinum Rotating Ring Disk Electrode. Journal of Applied Electrochemistry, 2005, 35, 945-953.	1.5	47
374	Temperature and pH Dependence of Oxygen Reduction Catalyzed by Iron Fluoroporphyrin Adsorbed on a Graphite Electrode. Journal of the Electrochemical Society, 2005, 152, A2421.	1.3	44
375	Design consideration of micro thin film solid-oxide fuel cells. Journal of Micromechanics and Microengineering, 2005, 15, S185-S192.	1.5	46
376	Semiconductive properties and photoelectrochemistry of iron oxide electrodes—IX. Photoresponses of sintered Zn-doped oxide electrode. Electrochimica Acta, 1992, 37, 425-428.	2.6	6
377	Intermittent light-ac electricity conversion on iron oxide/electrolyte solution/platinum photoelectrochemical cell. Electrochimica Acta, 1992, 37, 1101-1103.	2.6	2
378	A photoelectrochemical method for the thickness measurements of Cu2S film on a copper surface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 316, 341-345.	0.3	1

#	Article	IF	CITATIONS
379	Phenomena of weak electroluminescence of iron and other metal electrodes and their application potentiality in electrochemistry research. Electrochimica Acta, 1991, 36, 1591-1593.	2.6	2
380	Semiconductive properties and photoelectrochemistry of iron oxide electrodes—VIII. Photoresponses of sintered Zn-doped iron oxide electrode. Electrochimica Acta, 1991, 36, 1585-1590.	2.6	11
381	Facile synthesis and compositionâ€ŧuning of bimetallic <scp>PbCd</scp> nanoparticles as superior <scp> CO ₂ â€ŧoâ€HCOOH </scp> electrocatalysts. International Journal of Energy Research, 0, , .	2.2	2