IstvÃ;n Csontos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5677931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Powder filling of electrospun material in vials: A proof-of-concept study. International Journal of Pharmaceutics, 2022, 613, 121413.	2.6	1
2	Continuous blending monitored and feedback controlled by machine vision-based PAT tool. Journal of Pharmaceutical and Biomedical Analysis, 2021, 196, 113902.	1.4	9
3	Continuous downstream processing of milled electrospun fibers to tablets monitored by near-infrared and Raman spectroscopy. European Journal of Pharmaceutical Sciences, 2021, 164, 105907.	1.9	7
4	Polymorphic Concentration Control for Crystallization Using Raman and Attenuated Total Reflectance Ultraviolet Visible Spectroscopy. Crystal Growth and Design, 2020, 20, 73-86.	1.4	11
5	Study on the Microwave-Assisted Batch and Continuous Flow Synthesis of N-Alkyl-Isoindolin-1-One-3-Phosphonates by a Special Kabachnik–Fields Condensation. Molecules, 2020, 25, 3307.	1.7	13
6	Direct Processing of a Flow Reaction Mixture Using Continuous Mixed Suspension Mixed Product Removal Crystallizer. Crystal Growth and Design, 2020, 20, 4433-4442.	1.4	12
7	Effects of thermal annealing and solvent-induced crystallization on the structure and properties of poly(lactic acid) microfibres produced by high-speed electrospinning. Journal of Thermal Analysis and Calorimetry, 2020, 142, 581-594.	2.0	17
8	Fast, Spectroscopy-Based Prediction of In Vitro Dissolution Profile of Extended Release Tablets Using Artificial Neural Networks. Pharmaceutics, 2019, 11, 400.	2.0	27
9	Scaled-Up Production and Tableting of Grindable Electrospun Fibers Containing a Protein-Type Drug. Pharmaceutics, 2019, 11, 329.	2.0	24
10	Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation. Biotechnology Progress, 2019, 35, e2848.	1.3	31
11	Continuous alternative to freeze drying: Manufacturing of cyclodextrin-based reconstitution powder from aqueous solution using scaled-up electrospinning. Journal of Controlled Release, 2019, 298, 120-127.	4.8	47
12	Continuous Formulation Approaches of Amorphous Solid Dispersions: Significance of Powder Flow Properties and Feeding Performance. Pharmaceutics, 2019, 11, 654.	2.0	20
13	Pharmaceutical and Macromolecular Technologies in the Spirit of Industry 4.0. Periodica Polytechnica: Chemical Engineering, 2018, 62, .	0.5	7
14	Real-time feedback control of twin-screw wet granulation based on image analysis. International Journal of Pharmaceutics, 2018, 547, 360-367.	2.6	36
15	The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction. Beilstein Journal of Organic Chemistry, 2017, 13, 76-86.	1.3	36
16	Raman-Based Feedback Control of the Enzymatic Hydrolysis of Lactose. Organic Process Research and Development, 2016, 20, 1721-1727.	1.3	11
17	Feedback Control of Oximation Reaction by Inline Raman Spectroscopy. Organic Process Research and Development, 2015, 19, 189-195.	1.3	22
18	Controlled Formation of Freeâ€Flowing Carvedilol Particles in the Presence of Polyvinylpyrrolidone. Chemical Engineering and Technology, 2014, 37, 249-256.	0.9	2

IstvÃin Csontos

#	Article	IF	CITATIONS
19	Green synthesis and characterization of phosphorus flame retardant crosslinking agents for epoxy resins. Journal of Applied Polymer Science, 2014, 131, .	1.3	31
20	Self-extinguishing polypropylene with a mass fraction of 9% intumescent additiveÂ- A new physical way for enhancing the fire retardant efficiency. Polymer Degradation and Stability, 2013, 98, 79-86.	2.7	28
21	Implementation of Raman Signal Feedback to Perform Controlled Crystallization of Carvedilol. Organic Process Research and Development, 2013, 17, 493-499.	1.3	47
22	A study on the kabachnikâ€â€fields reaction of benzaldehyde, cyclohexylamine, and dialkyl phosphites. Heteroatom Chemistry, 2012, 23, 171-178.	0.4	17
23	A study on the Kabachnik–Fields reaction of benzaldehyde, propylamine, and diethyl phosphite by in situ Fourier transform IR spectroscopy. Heteroatom Chemistry, 2011, 22, 599-604.	0.4	14
24	Green Chemical Tools in Organophosphorus Chemistry—Organophosphorus Tools in Green Chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 613-620.	0.8	15
25	Monitoring the Phosphorylation of Phenol Derivatives with Diethyl Chlorophosphate in Liquid–Liquid and Solid–Liquid Phase by In Situ Fourier Transform Infrared Spectroscopy, Part II. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 2333-2340.	0.8	2
26	Monitoring the Phosphorylation of Phenol with Diethyl Chlorophosphate in Aqueous Medium in the Presence of Sodium Hydroxide by in Situ Fourier Transform Infrared Spectroscopy. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 832-837.	0.8	4
27	A study on the equilibrium reaction of benzaldehyde and sodium bisulphite by in situ Fourier transform IR spectroscopy. Periodica Polytechnica: Chemical Engineering, 2009, 53, 9.	0.5	2
28	Monitoring the pH-Dependent Oximation of Methyl Ethyl Ketone and Benzaldehyde by in situ Fourier Transform IR Spectroscopy in a Heterogeneous Liquid–Liquid Two-Phase System. Spectroscopy Letters, 2009, 42, 67-72.	0.5	8
29	A Study of the pH Dependence of the Twoâ€Step Oximation of Acetone by in situ Fourier Transform Infrared Spectroscopy. Chemical Engineering and Technology, 2008, 31, 421-425.	0.9	17
30	Green chemical approaches and tools in the development of environmentally friendly synthetic methods. Periodica Polytechnica: Chemical Engineering, 2007, 51, 53.	0.5	7
31	Intrinsically flame retardant epoxy resin – Fire performance and background – Part I. Polymer Degradation and Stability, 2007, 92, 2223-2230.	2.7	93
32	Fire Retarded Insulating Sheets from Recycled Materials. Macromolecular Symposia, 2006, 233, 217-224.	0.4	12
33	Controlled technology for forming a nanostructured polymer coating for solid pharmaceuticals. Polymers for Advanced Technologies, 2006, 17, 884-888.	1.6	3
34	Micro Raman and atomic force microscopy analysis of naturally aged polyethylene. Polymer Degradation and Stability, 2004, 85, 1023-1027.	2.7	10
35	Fire retardancy effect of migration in polypropylene nanocomposites induced by modified interlayer. Polymer Degradation and Stability, 2003, 82, 379-385.	2.7	82
36	New reactive additives for interface modification in multicomponent polyolefin systems. Macromolecular Symposia, 2001, 176, 189-198.	0.4	11

IstvÃin Csontos

#	Article	IF	CITATIONS
37	Role of interface modification in filled and flame-retarded polymer systems. Solid State Ionics, 2001, 141-142, 211-215.	1.3	14
38	Influence of modified rheology on the efficiency of intumescent flame retardant systems. Polymer Degradation and Stability, 2001, 74, 423-426.	2.7	40
39	Role of pigments in the stability of polyethylene systems. Macromolecular Materials and Engineering, 2000, 282, 30-36.	1.7	26
40	Title is missing!. Magyar Apróvad Közlemények, 1999, 56, 1071-1080.	1.4	5