

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5677836/publications.pdf Version: 2024-02-01

VANLL

#	Article	IF	CITATIONS
1	Dorsal Root Ganglion Infiltration by Macrophages Contributes toÂPaclitaxel Chemotherapy-Induced Peripheral Neuropathy. Journal of Pain, 2016, 17, 775-786.	0.7	237
2	Electrophysiological and transcriptomic correlates of neuropathic pain in human dorsal root ganglion neurons. Brain, 2019, 142, 1215-1226.	3.7	198
3	The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. Journal of Neuroscience, 2015, 35, 13487-13500.	1.7	190
4	Toll-Like Receptor 4 Signaling Contributes to Paclitaxel-Induced Peripheral Neuropathy. Journal of Pain, 2014, 15, 712-725.	0.7	182
5	DRG Voltage-Gated Sodium Channel 1.7 Is Upregulated in Paclitaxel-Induced Neuropathy in Rats and in Humans with Neuropathic Pain. Journal of Neuroscience, 2018, 38, 1124-1136.	1.7	173
6	CD8 ⁺ T Cells and Endogenous IL-10 Are Required for Resolution of Chemotherapy-Induced Neuropathic Pain. Journal of Neuroscience, 2016, 36, 11074-11083.	1.7	164
7	Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain, 2017, 158, 417-429.	2.0	137
8	Induction of Monocyte Chemoattractant Protein-1 (MCP-1) and Its Receptor CCR2 in Primary Sensory Neurons Contributes to Paclitaxel-Induced Peripheral Neuropathy. Journal of Pain, 2013, 14, 1031-1044.	0.7	122
9	MAPK signaling downstream to TLR4 contributes to paclitaxel-induced peripheral neuropathy. Brain, Behavior, and Immunity, 2015, 49, 255-266.	2.0	105
10	Nociceptor Translational Profiling Reveals the Ragulator-Rag GTPase Complex as a Critical Generator of Neuropathic Pain. Journal of Neuroscience, 2019, 39, 393-411.	1.7	95
11	Studying human nociceptors: from fundamentals to clinic. Brain, 2021, 144, 1312-1335.	3.7	77
12	Enhanced function of <scp>TRPV1</scp> via upâ€regulation by insulinâ€like growth factorâ€1 in a rat model of bone cancer pain. European Journal of Pain, 2014, 18, 774-784.	1.4	52
13	Formaldehyde up-regulates TRPV1 through MAPK and PI3K signaling pathways in a rat model of bone cancer pain. Neuroscience Bulletin, 2012, 28, 165-172.	1.5	49
14	Role of Complement in a Rat Model of Paclitaxel-Induced Peripheral Neuropathy. Journal of Immunology, 2018, 200, 4094-4101.	0.4	42
15	Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. Pain, 2018, 159, 884-893.	2.0	38
16	Subclinical Peripheral Neuropathy in Patients With Multiple Myeloma Before Chemotherapy Is Correlated With Decreased Fingertip Innervation Density. Journal of Clinical Oncology, 2014, 32, 3156-3162.	0.8	37
17	Morphological and Physiological Plasticity of Spinal Lamina II GABA Neurons Is Induced by Sciatic Nerve Chronic Constriction Injury in Mice. Frontiers in Cellular Neuroscience, 2018, 12, 143.	1.8	21
18	AMPK activation by ozone therapy inhibits tissue factorâ€ŧriggered intestinal ischemia and ameliorates chemotherapeutic enteritis. FASEB Journal, 2020, 34, 13005-13021.	0.2	16

Yan Li

#	Article	IF	CITATIONS
19	Electrophysiological Alterations Driving Pain-Associated Spontaneous Activity in Human Sensory Neuron Somata Parallel Alterations Described in Spontaneously Active Rodent Nociceptors. Journal of Pain, 2022, 23, 1343-1357.	0.7	16
20	Chemotherapy-induced peripheral neuropathy in a dish: dorsal root ganglion cells treated in vitro with paclitaxel show biochemical and physiological responses parallel to that seen in vivo. Pain, 2021, 162, 84-96.	2.0	12
21	Role of innate immunity in chemotherapy-induced peripheral neuropathy. Neuroscience Letters, 2021, 755, 135941.	1.0	7
22	p38/TF/HIF-α Signaling Pathway Participates in the Progression of CIPN in Mice. BioMed Research International, 2019, 2019, 1-11.	0.9	5
23	Cranial irradiation induces axon initial segment dysfunction and neuronal injury in the prefrontal coupling. Neuro-Oncology Advances, 2020, 2, vdaa058.	0.4	3
24	Fadu head and neck squamous cell carcinoma induces hyperexcitability of primary sensory neurons in an in vitro coculture model. Pain Reports, 2022, 7, e1012.	1.4	2