Peter Glarborg

List of Publications by Citations

Source: https://exaly.com/author-pdf/5677299/peter-glarborg-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

274 13,638 59 107 papers citations h-index g-index 279 15,936 5.6 6.81

ext. papers

15,936 ext. citations

avg, IF

6.81 L-index

#	Paper	IF	Citations
274	Oxy-fuel combustion of solid fuels. <i>Progress in Energy and Combustion Science</i> , 2010 , 36, 581-625	33.6	819
273	Fuel nitrogen conversion in solid fuel fired systems. <i>Progress in Energy and Combustion Science</i> , 2003 , 29, 89-113	33.6	644
272	Modeling nitrogen chemistry in combustion. <i>Progress in Energy and Combustion Science</i> , 2018 , 67, 31-68	33.6	449
271	Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor. <i>Combustion and Flame</i> , 1998 , 115, 1-27	5.3	417
270	Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors. <i>Combustion and Flame</i> , 1986 , 65, 177-202	5.3	328
269	Chemical Effects of a High CO2 Concentration in Oxy-Fuel Combustion of Methane. <i>Energy & Energy & Ene</i>	4.1	297
268	Release of K, Cl, and S during Pyrolysis and Combustion of High-Chlorine Biomass. <i>Energy & Energy & E</i>	4.1	238
267	2003,		235
266	Ammonia chemistry in oxy-fuel combustion of methane. <i>Combustion and Flame</i> , 2009 , 156, 1937-1949	5.3	225
265	The oxidation of hydrogen cyanide and related chemistry. <i>Progress in Energy and Combustion Science</i> , 2008 , 34, 1-46	33.6	223
264	Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 2: Influence of Fuel Composition. <i>Energy & Double Supposed Services</i> (1998) 22, 1598-1609	4.1	217
263	An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. <i>Combustion and Flame</i> , 2009 , 156, 1413-1426	5.3	210
262	The role of NNH in NO formation and control. <i>Combustion and Flame</i> , 2011 , 158, 774-789	5.3	180
261	Global Combustion Mechanisms for Use in CFD Modeling under Oxy-Fuel Conditions. <i>Energy & Energy & Ene</i>	4.1	178
260	Mechanism and modeling of the formation of gaseous alkali sulfates. <i>Combustion and Flame</i> , 2005 , 141, 22-39	5.3	177
259	Ammonia chemistry below 1400IK under fuel-rich conditions in a flow reactor. <i>Combustion and Flame</i> , 2004 , 136, 501-518	5.3	173
258	Numerical modeling of straw combustion in a fixed bed. <i>Fuel</i> , 2005 , 84, 389-403	7.1	167

(1997-2006)

257	Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 1: Development and Evaluation of Quantification Methods. <i>Energy & Energy & Ener</i>	4.1	154
256	Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. <i>Combustion and Flame</i> , 2004 , 136, 91-128	5.3	139
255	Experimental measurements and kinetic modeling of CO/H2/O2/NOx conversion at high pressure. <i>International Journal of Chemical Kinetics</i> , 2008 , 40, 454-480	1.4	137
254	Hidden interactions Trace species governing combustion and emissions. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 77-98	5.9	134
253	Inhibition and sensitization of fuel oxidation by SO2. <i>Combustion and Flame</i> , 2001 , 127, 2234-2251	5.3	133
252	Modelling and experiments of straw combustion in a grate furnace. <i>Biomass and Bioenergy</i> , 2000 , 19, 199-208	5.3	130
251	Modeling the thermal DENOx process in flow reactors. Surface effects and Nitrous Oxide formation. <i>International Journal of Chemical Kinetics</i> , 1994 , 26, 421-436	1.4	130
250	Shedding of ash deposits. <i>Progress in Energy and Combustion Science</i> , 2009 , 35, 31-56	33.6	127
249	Impact of SO2 and NO on CO oxidation under post-flame conditions. <i>International Journal of Chemical Kinetics</i> , 1996 , 28, 773-790	1.4	127
248	Experimental and kinetic modeling study of the oxidation of benzene. <i>International Journal of Chemical Kinetics</i> , 2000 , 32, 498-522	1.4	113
247	Reburning chemistry: a kinetic modeling study. <i>Industrial & amp; Engineering Chemistry Research</i> , 1992 , 31, 1477-1490	3.9	105
246	Ammonia oxidation at high pressure and intermediate temperatures. Fuel, 2016, 181, 358-365	7.1	104
245	High-pressure oxidation of methane. Combustion and Flame, 2016, 172, 349-364	5.3	103
244	Release of Chlorine and Sulfur during Biomass Torrefaction and Pyrolysis. <i>Energy & Description</i> 28, 3738-3746	4.1	103
243	Nitrogen chemistry during burnout in fuel-staged combustion. Combustion and Flame, 1996, 107, 211-2	.2 3 .3	101
242	Sensitizing effects of NOx on CH4 oxidation at high pressure. Combustion and Flame, 2008, 154, 529-54	155.3	100
241	Modeling the thermal De-NOx process: Closing in on a final solution. <i>International Journal of Chemical Kinetics</i> , 1999 , 31, 757-765	1.4	100
240	Influence of process parameters on nitrogen oxide formation in pulverized coal burners. <i>Progress in Energy and Combustion Science</i> , 1997 , 23, 349-377	33.6	99

239	The thermal DeNOx process: Influence of partial pressures and temperature. <i>Chemical Engineering Science</i> , 1995 , 50, 1455-1466	4.4	97
238	Low temperature interactions between hydrocarbons and nitric oxide: An experimental study. <i>Combustion and Flame</i> , 1997 , 109, 25-36	5.3	95
237	Heat transfer in ash deposits: A modelling tool-box. <i>Progress in Energy and Combustion Science</i> , 2005 , 31, 371-421	33.6	95
236	Review on Ammonia as a Potential Fuel: From Synthesis to Economics. <i>Energy & Description</i> 2021, 35, 6964-7029	4.1	95
235	The reaction of ammonia with nitrogen dioxide in a flow reactor: Implications for the NH2 + NO2 reaction. <i>International Journal of Chemical Kinetics</i> , 1995 , 27, 1207-1220	1.4	92
234	Reburn Chemistry in Oxy-fuel Combustion of Methane. Energy & amp; Fuels, 2009, 23, 3565-3572	4.1	89
233	Low temperature oxidation of methane: the influence of nitrogen oxides. <i>Combustion Science and Technology</i> , 2000 , 151, 31-71	1.5	88
232	An exploratory study of alkali sulfate aerosol formation during biomass combustion. Fuel, 2008, 87, 15	97-160	082
231	Experimental and kinetic modeling study of the effect of NO and SO2 on the oxidation of CO?H2 mixtures. <i>International Journal of Chemical Kinetics</i> , 2003 , 35, 564-575	1.4	79
230	Kinetics of homogeneous nitrous oxide decomposition. <i>Combustion and Flame</i> , 1994 , 99, 523-532	5.3	78
229	Nitric Oxide Reduction by Non-hydrocarbon Fuels. Implications for Reburning with Gasification Gases. <i>Energy & Damp; Fuels</i> , 2000 , 14, 828-838	4.1	77
228	Formation and reduction of nitric oxide in fixed-bed combustion of straw. <i>Fuel</i> , 2006 , 85, 705-716	7.1	76
227	An experimental study of biomass ignition?. Fuel, 2003, 82, 825-833	7.1	76
226	Influence of fast pyrolysis conditions on yield and structural transformation of biomass chars. <i>Fuel Processing Technology</i> , 2015 , 140, 205-214	7.2	75
225	Release of K, Cl, and S during combustion and co-combustion with wood of high-chlorine biomass in bench and pilot scale fuel beds. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 2363-2372	5.9	75
224	Mechanism and modeling of hydrogen cyanide oxidation in a flow reactor. <i>Combustion and Flame</i> , 1994 , 99, 475-483	5.3	75
223	Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane-air flames. <i>Combustion and Flame</i> , 2002 , 131, 285-298	5.3	74
222	Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures. <i>Applied Energy</i> , 2016 , 171, 468-482	10.7	70

(2007-1994)

221	A flow reactor study of HNCO oxidation chemistry. Combustion and Flame, 1994, 98, 241-258	5.3	69	
220	Mechanisms of radical removal by SO2. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 339-347	5.9	68	
219	Oxidation of formaldehyde and its interaction with nitric oxide in a flow reactor. <i>Combustion and Flame</i> , 2003 , 132, 629-638	5.3	68	
218	Screening of NiFe2O4 Nanoparticles as Oxygen Carrier in Chemical Looping Hydrogen Production. <i>Energy & Discourt Senergy & Disc</i>	4.1	63	
217	Reactions of SO3 with the O/H radical pool under combustion conditions. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 3984-91	2.8	60	
216	Nitromethane dissociation: Implications for the CH3 + NO2 reaction. <i>International Journal of Chemical Kinetics</i> , 1999 , 31, 591-602	1.4	60	
215	Ignition-promoting effect of NO2 on methane, ethane and methane/ethane mixtures in a rapid compression machine. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 433-440	5.9	59	
214	Interactions of CO, NOx and H2O Under Post-Flame Conditions. <i>Combustion Science and Technology</i> , 1995 , 110-111, 461-485	1.5	59	
213	Experimental Study on Effects of Particle Shape and Operating Conditions on Combustion Characteristics of Single Biomass Particles. <i>Energy & Damp; Fuels</i> , 2013 , 27, 507-514	4.1	58	
212	Release and Transformation of Inorganic Elements in Combustion of a High-Phosphorus Fuel. <i>Energy & Energy & En</i>	4.1	58	
211	Experimental measurements and kinetic modeling of CH4/O2 and CH4/C2H6/O2 conversion at high pressure. <i>International Journal of Chemical Kinetics</i> , 2008 , 40, 778-807	1.4	58	
21 0	Post-flame gas-phase sulfation of potassium chloride. <i>Combustion and Flame</i> , 2013 , 160, 959-969	5.3	57	
209	Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor General combustion and ash behaviour. <i>Fuel</i> , 2011 , 90, 1980-1991	7.1	57	
208	Devolatilization characteristics of large particles of tyre rubber under combustion conditions. <i>Fuel</i> , 2006 , 85, 1335-1345	7.1	57	
207	Effect of fast pyrolysis conditions on biomass solid residues at high temperatures. <i>Fuel Processing Technology</i> , 2016 , 143, 118-129	7.2	55	
206	Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler. <i>Fuel</i> , 2013 , 113, 632-643	7.1	55	
205	Evaluation of different oxygen carriers for biomass tar reforming (II): Carbon deposition in experiments with methane and other gases. <i>Fuel</i> , 2011 , 90, 1370-1382	7.1	54	
204	Homogeneous and heterogeneously catalyzed oxidation of . <i>Chemical Engineering Science</i> , 2007 , 62, 4496-4499	4.4	54	

203	Oxidation of Dimethyl Ether and its Interaction with Nitrogen Oxides. <i>Israel Journal of Chemistry</i> , 1999 , 39, 73-86	3.4	53
202	Dust-Firing of Straw and Additives: Ash Chemistry and Deposition Behavior. <i>Energy & amp; Fuels</i> , 2011 , 25, 2862-2873	4.1	52
201	Evaluation of different oxygen carriers for biomass tar reforming (I): Carbon deposition in experiments with toluene. <i>Fuel</i> , 2011 , 90, 1049-1060	7.1	52
200	Laboratory Study of the CO/NH3/NO/O2 System: Implications for Hybrid Reburn/SNCR Strategies. <i>Energy & Description of the Color of the </i>	4.1	52
199	Fuel-nitrogen conversion in the combustion of small amines using dimethylamine and ethylamine as biomass-related model fuels. <i>Combustion and Flame</i> , 2012 , 159, 2254-2279	5.3	51
198	Experimental and kinetic modeling study of C2H4 oxidation at high pressure. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 367-375	5.9	51
197	Hydrogen oxidation at high pressure and intermediate temperatures: Experiments and kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 553-560	5.9	50
196	A kinetic issue in reburning: the fate of HCNO. Combustion and Flame, 2003, 135, 357-362	5.3	50
195	Methanol oxidation in a flow reactor: Implications for the branching ratio of the CH3OH+OH reaction. <i>International Journal of Chemical Kinetics</i> , 2008 , 40, 423-441	1.4	49
194	Comparison of high temperature chars of wheat straw and rice husk with respect to chemistry, morphology and reactivity. <i>Biomass and Bioenergy</i> , 2016 , 86, 76-87	5.3	48
193	Trace elements in co-combustion of solid recovered fuel and coal. <i>Fuel Processing Technology</i> , 2013 , 105, 212-221	7.2	47
192	High-pressure oxidation of ethane. <i>Combustion and Flame</i> , 2017 , 182, 150-166	5.3	46
191	Experimental and Kinetic Modeling Study of C2H2 Oxidation at High Pressure. <i>International Journal of Chemical Kinetics</i> , 2016 , 48, 724-738	1.4	46
190	An experimental and kinetic modeling study of premixed nitromethane flames at low pressure. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 407-414	5.9	46
189	Kinetic Study of NO Reduction over Biomass Char under Dynamic Conditions. <i>Energy & Dynamic Conditions</i> . <i>Energy & Dynamic C</i>	4.1	46
188	Release and transformation of chlorine and potassium during pyrolysis of KCl doped biomass. <i>Fuel</i> , 2017 , 197, 422-432	7.1	45
187	Modeling Low-Temperature Gas Reburning. NOx Reduction Potential and Effects of Mixing. <i>Energy & Energy Energy</i> 8, 12, 329-338	4.1	43
186	Formation of NO from N2/O2 Mixtures in a Flow Reactor: Toward an Accurate Prediction of Thermal NO. <i>International Journal of Chemical Kinetics</i> , 2015 , 47, 518-532	1.4	41

(2017-1996)

185	Modelling the Formation of N2O and NO2 in the Thermal De-NOx Process. <i>Springer Series in Chemical Physics</i> , 1996 , 318-333	0.3	41	
184	Experimental and Kinetic Modeling Study of Methanol Ignition and Oxidation at High Pressure. <i>International Journal of Chemical Kinetics</i> , 2013 , 45, 283-294	1.4	40	
183	Experimental investigation of no from pulverized char combustion. <i>Proceedings of the Combustion Institute</i> , 2000 , 28, 2271-2278	5.9	40	
182	Mutually Promoted Thermal Oxidation of Nitric Oxide and Organic Compounds. <i>Industrial & Engineering Chemistry Research</i> , 1995 , 34, 1882-1888	3.9	40	
181	Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures. <i>Biomass and Bioenergy</i> , 2016 , 94, 117-129	5.3	39	
180	Branching Fraction of the NH2 + NO Reaction between 1210 and 1370 K. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 3741-3745	2.8	39	
179	Partitioning of K, Cl, S and P during combustion of poplar and brassica energy crops. <i>Fuel</i> , 2014 , 134, 209-219	7.1	37	
178	Ab initio and kinetic modeling studies of formic acid oxidation. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 153-160	5.9	37	
177	Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 2845-2852	5.9	34	
176	Experimental and numerical analysis of the autoignition behavior of NH3 and NH3/H2 mixtures at high pressure. <i>Combustion and Flame</i> , 2020 , 215, 134-144	5.3	33	
175	A reduced mechanism for nitrogen chemistry in methane combustion. <i>Proceedings of the Combustion Institute</i> , 1992 , 24, 889-898		33	
174	Thermal dissociation of SO3 at 1000-1400 K. Journal of Physical Chemistry A, 2006, 110, 6654-9	2.8	32	
173	Theory and modeling of relevance to prompt-NO formation at high pressure. <i>Combustion and Flame</i> , 2018 , 195, 3-17	5.3	32	
172	Devolatilization kinetics of woody biomass at short residence times and high heating rates and peak temperatures. <i>Applied Energy</i> , 2016 , 162, 245-256	10.7	31	
171	Kinetic Modeling of Fuel-Nitrogen Conversion in One-Dimensional, Pulverized-Coal Flames. <i>Combustion Science and Technology</i> , 1991 , 76, 81-109	1.5	31	
170	Combustion chemistry in the twenty-first century: Developing theory-informed chemical kinetics models. <i>Progress in Energy and Combustion Science</i> , 2021 , 83, 100886	33.6	31	
169	High-pressure pyrolysis and oxidation of DME and DME/CH4. Combustion and Flame, 2019, 205, 80-92	5.3	30	
168	New insights in the low-temperature oxidation of acetylene. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 355-363	5.9	30	

167	Influence of coal quality on combustion performance. Fuel, 1998, 77, 1317-1328	7.1	30
166	A study of benzene formation in a laminar flow reactor. <i>Proceedings of the Combustion Institute</i> , 2002 , 29, 1329-1336	5.9	30
165	Visualization methods in analysis of detailed chemical kinetics modelling. <i>Computers & Chemistry</i> , 2001 , 25, 161-70		30
164	High-temperature chemistry of HCl and Cl2. Combustion and Flame, 2015, 162, 2693-2704	5.3	29
163	High pressure oxidation of C2H4/NO mixtures. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 449-45	5 7.9	29
162	A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal. <i>Energy & Description</i> 2011, 25, 4280-4289	4.1	29
161	The recombination of hydrogen atoms with nitric oxide at high temperatures. <i>Proceedings of the Combustion Institute</i> , 1998 , 27, 219-226		29
160	Propargyl recombination: estimation of the high temperature, low pressure rate constant from flame measurements. <i>Proceedings of the Combustion Institute</i> , 2005 , 30, 1023-1031	5.9	29
159	A Chemical Engineering Model for Predicting NO Emissions and Burnout from Pulverised Coal Flames. <i>Combustion Science and Technology</i> , 1998 , 132, 251-314	1.5	29
158	Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants. <i>Energy & Energy & Energy</i>	4.1	28
157	Potassium Capture by Kaolin, Part 2: K2CO3, KCl, and K2SO4. Energy & Energy	4.1	28
156	High-pressure oxidation of propane. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 461-468	5.9	28
155	An Exploratory Flow Reactor Study of H2S Oxidation at 30🛮 00 Bar. <i>International Journal of Chemical Kinetics</i> , 2017 , 49, 37-52	1.4	28
154	Sulfation of Condensed Potassium Chloride by SO2. <i>Energy & Damp; Fuels</i> , 2013 , 27, 3283-3289	4.1	28
153	Experimental Investigation of Ash Deposit Shedding in a Straw-Fired Boiler. <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy & Deposit Shedding in a Straw-Fired Boiler</i> . <i>Energy &</i>	4.1	28
152	Experimental and Modeling Study of Biomass Reburning. <i>Energy & Energy & En</i>	4.1	28
151	Experimental and Modeling Investigation of the Effect of H2S Addition to Methane on the Ignition and Oxidation at High Pressures. <i>Energy & Dispersion</i> 2017, 31, 2175-2182	4.1	27
150	Inhibition of hydrogen oxidation by HBr and Br2. <i>Combustion and Flame</i> , 2012 , 159, 528-540	5.3	27

(2017-2013)

149	Rate constant and branching fraction for the NH2 + NO2 reaction. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 9011-22	2.8	27	
148	Potassium Capture by Kaolin, Part 1: KOH. Energy & Energy & 2018, 32, 1851-1862	4.1	26	
147	Oxidation of reduced sulfur species: carbon disulfide. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 6798-	8029 8	26	
146	Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 1811-1818	5.9	26	
145	Oxidation of Reduced Sulfur Species: Carbonyl Sulfide. <i>International Journal of Chemical Kinetics</i> , 2013 , 45, 429-439	1.4	26	
144	Parabenzoquinone pyrolysis and oxidation in a flow reactor. <i>International Journal of Chemical Kinetics</i> , 1998 , 30, 683-697	1.4	26	
143	NO Formation during Oxy-Fuel Combustion of Coal and Biomass Chars. <i>Energy & Chars</i> , 2014, 28, 4684-4693	4.1	25	
142	Residence time distributions in a cold, confined swirl flow. <i>Chemical Engineering Science</i> , 1997 , 52, 2743	3- 2 756	25	
141	Direct Partial Oxidation of Natural Gas to Liquid Chemicals: Chemical Kinetic Modeling and Global Optimization. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 6579-6588	3.9	25	
140	Kinetic NO modelling and experimental results from single wood particle combustion. <i>Fuel</i> , 1997 , 76, 671-682	7.1	24	
139	Thermal dissociation of nitrous oxide at medium temperatures. <i>Proceedings of the Combustion Institute</i> , 1992 , 24, 917-923		24	
138	Reactivity of coal char in reducing NO. <i>Combustion and Flame</i> , 2004 , 136, 249-253	5.3	23	
137	Post-processing of detailed chemical kinetic mechanisms onto CFD simulations. <i>Computers and Chemical Engineering</i> , 2004 , 28, 2351-2361	4	23	
136	Nitrous oxide emissions control by reburning. <i>Combustion and Flame</i> , 1996 , 107, 453-463	5.3	23	
135	High-pressure pyrolysis and oxidation of ethanol. <i>Fuel</i> , 2018 , 218, 247-257	7.1	22	
134	Extension of apparent devolatilization kinetics from thermally thin to thermally thick particles in zero dimensions for woody biomass. <i>Energy</i> , 2016 , 95, 279-290	7.9	22	
133	Some chemical kinetics issues in reburning: The branching fraction of the HCCO+NO reaction. <i>Proceedings of the Combustion Institute</i> , 1998 , 27, 235-243		22	
132	Fly Ash Formation during Suspension Firing of Biomass: Effects of Residence Time and Fuel Type. <i>Energy & Energy & Energ</i>	4.1	21	

131	An experimental and kinetic modeling study of premixed nitroethane flames at low pressure. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 617-624	5.9	21
130	NO Reduction over Biomass and Coal Char during Simultaneous Combustion. <i>Energy & amp; Fuels</i> , 2013 , 27, 7817-7826	4.1	21
129	Computer-Aided Modeling Framework for Efficient Model Development, Analysis, and Identification: Combustion and Reactor Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 5253-5265	3.9	21
128	Detailed modeling and laser-induced fluorescence imaging of nitric oxide in a NH3-seeded non-premixed methane/air flame. <i>Proceedings of the Combustion Institute</i> , 2002 , 29, 2195-2202	5.9	21
127	Optical investigation of gas-phase KCl/KOH sulfation in post flame conditions. <i>Fuel</i> , 2018 , 224, 461-468	7.1	20
126	Deposit Probe Measurements in Large Biomass-Fired Grate Boilers and Pulverized-Fuel Boilers. <i>Energy & Description of the Energy & Description</i>	4.1	20
125	Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2 and OCHCHO + HO2. Journal of Physical Chemistry A, 2015 , 119, 7305-15	2.8	20
124	High-Temperature Release of SO2 from Calcined Cement Raw Materials. <i>Energy & amp; Fuels</i> , 2011 , 25, 2917-2926	4.1	20
123	Heat Transfer in a Fixed Bed of Straw Char. Energy & Samp; Fuels, 2003, 17, 1251-1258	4.1	20
122	Influence of Torrefaction on Single Particle Combustion of Wood. <i>Energy & Description</i> 2016, 30, 5772-57	77,81	20
121	Modelling of temporal and spatial evolution of sulphur oxides and sulphuric acid under large, two-stroke marine engine-like conditions using integrated CFD-chemical kinetics. <i>Applied Energy</i> , 2017 , 193, 60-73	10.7	19
120	Modeling the Use of Sulfate Additives for Potassium Chloride Destruction in Biomass Combustion. <i>Energy & Destruction in Biomass Combustion</i> . <i>Energy & Destruction in Biomass Combustion</i> .	4.1	19
119	Soot Reactivity in Conventional Combustion and Oxy-fuel Combustion Environments. <i>Energy & Energy & En</i>	4.1	19
118	The CH3+NO rate coefficient at high temperatures: Theoretical analysis and comparison with experiment. <i>International Journal of Chemical Kinetics</i> , 1998 , 30, 223-228	1.4	19
117	A model of the coal reburning process. <i>Proceedings of the Combustion Institute</i> , 1998 , 27, 3027-3035		19
116	Formation and destruction of CH2O in the exhaust system of a gas engine. <i>Environmental Science & Environmental Science</i>	10.3	19
115	Effects of mixing on ammonia oxidation in combustion environments at intermediate temperatures. <i>Proceedings of the Combustion Institute</i> , 2005 , 30, 1193-1200	5.9	19
114	Ignition delay times of NH3 /DME blends at high pressure and low DME fraction: RCM experiments and simulations. <i>Combustion and Flame</i> , 2021 , 227, 120-134	5.3	19

113	Potassium capture by coal fly ash: K2CO3, KCl and K2SO4. Fuel Processing Technology, 2019, 194, 1061	157.2	18
112	Impact of Coal Fly Ash Addition on Combustion Aerosols (PM2.5) from Full-Scale Suspension-Firing of Pulverized Wood. <i>Energy & Energy & 2014</i> , 28, 3217-3223	4.1	18
111	Importance of the Hydrogen Isocyanide Isomer in Modeling Hydrogen Cyanide Oxidation in Combustion. <i>Energy & Dy Samp; Fuels</i> , 2017 , 31, 2156-2163	4.1	18
110	Influence of potassium chloride on moist CO oxidation under reducing conditions: Experimental and kinetic modeling study. <i>Fuel</i> , 2006 , 85, 978-988	7.1	18
109	Formation of NO from combustion of volatiles from municipal solid wastes. <i>Combustion and Flame</i> , 2001 , 124, 195-212	5.3	18
108	Modeling of chemical reactions in afterburning for the reduction of N2O. <i>Combustion and Flame</i> , 1996 , 106, 345-358	5.3	18
107	Autoignition studies of NH3/CH4 mixtures at high pressure. Combustion and Flame, 2020, 218, 19-26	5.3	18
106	Defluidization in fluidized bed gasifiers using high-alkali content fuels. <i>Biomass and Bioenergy</i> , 2016 , 91, 160-174	5.3	18
105	Inhibition and Promotion of Pyrolysis by Hydrogen Sulfide (HS) and Sulfanyl Radical (SH). <i>Journal of Physical Chemistry A</i> , 2016 , 120, 8941-8948	2.8	17
104	Oxy-fuel combustion of millimeter-sized coal char: Particle temperatures and NO formation. <i>Fuel</i> , 2013 , 106, 72-78	7.1	17
103	Numerical simulation of nitrogen oxide formation in lean premixed turbulent H2/O2/N2 flames. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 1591-1599	5.9	17
102	2017,		17
101	KOH capture by coal fly ash. <i>Fuel</i> , 2019 , 242, 828-836	7.1	16
100	Rate constant and thermochemistry for K + O2 + N2 = KO2 + N2. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 3329-36	2.8	16
99	Experimental and Numerical Investigation of Gas-Phase Freeboard Combustion. Part 1: Main Combustion Process. <i>Energy & Energy</i> (23, 5773-5782)	4.1	16
98	Mixing Effects in the Selective Noncatalytic Reduction of NO. <i>Industrial & Discrete Manager Selection of No. Industrial & Discrete Manager Selection of No. Industria</i>	3.9	16
97	Effects of ambient pressure on ignition and flame characteristics in diesel spray combustion. <i>Fuel</i> , 2019 , 237, 676-685	7.1	16
96	Mechanistic Model for Ash Deposit Formation in Biomass Suspension Firing. Part 1: Model Verification by Use of Entrained Flow Reactor Experiments. <i>Energy & Description</i> 2017, 31, 2771-2789	4.1	15

95	Interactive Matching between the Temperature Profile and Secondary Reactions of Oil Shale Pyrolysis. <i>Energy & Energy & </i>	4.1	15
94	Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurements. <i>Energy & Energy & En</i>	4.1	15
93	NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture. <i>International Journal of Greenhouse Gas Control</i> , 2012 , 10, 33-45	4.2	15
92	Particle Emissions from Domestic Gas Cookers. Combustion Science and Technology, 2010, 182, 1511-15.	2 7 .5	15
91	Pressure effects on the thermal de-NOx process. <i>Proceedings of the Combustion Institute</i> , 1996 , 26, 206	7-2074	15
90	Reactivity of sewage sludge, RDF, and straw chars towards NO. Fuel, 2019 , 236, 297-305	7.1	15
89	Density Functional Theory Study of the Role of an Carbon Dxygen Single Bond Group in the NOIThar Reaction. <i>Energy & Double Study</i> , 2018, 32, 7734-7744	4.1	15
88	Skeletal mechanisms for prediction of NOx emission in solid fuel combustion. <i>Fuel</i> , 2019 , 254, 115569	7.1	14
87	Tensile Adhesion Strength of Biomass Ash Deposits: Effect of the Temperature Gradient and Ash Chemistry. <i>Energy & Description</i> 2018, 32, 4432-4441	4.1	14
86	A Reduced Reaction Scheme for Volatile Nitrogen Conversion in Coal Combustion. <i>Combustion Science and Technology</i> , 1998 , 131, 193-223	1.5	14
85	The influence of size and morphology on devolatilization of biomass particles. <i>Fuel</i> , 2020 , 264, 116755	7.1	14
84	A Rhodium-Based Methane Oxidation Catalyst with High Tolerance to H2O and SO2. <i>ACS Catalysis</i> , 2020 , 10, 1821-1827	13.1	14
83	Optical measurements of KOH, KCl and K for quantitative K-Cl chemistry in thermochemical conversion processes. <i>Fuel</i> , 2020 , 271, 117643	7.1	13
82	Mixing large and small particles in a pilot scale rotary kiln. <i>Powder Technology</i> , 2011 , 210, 273-280	5.2	13
81	Kinetics of tyre char oxidation under combustion conditions. <i>Fuel</i> , 2007 , 86, 2343-2350	7.1	13
80	Characterization of a full-scale, single-burner pulverized coal boiler: temperatures, gas concentrations and nitrogen oxides. <i>Fuel</i> , 1994 , 73, 492-499	7.1	13
79	Modeling post-flame sulfation of KCl and KOH in bio-dust combustion with full and simplified mechanisms. <i>Fuel</i> , 2019 , 258, 116147	7.1	13
78	On the Rate Constant for NH+HO and Third-Body Collision Efficiencies for NH+H(+M) and NH+NH(+M). <i>Journal of Physical Chemistry A</i> , 2021 , 125, 1505-1516	2.8	13

77	A Simplified Model for Volatile-N Oxidation. <i>Energy & Damp; Fuels</i> , 2010 , 24, 2883-2890	4.1	12
76	Heterogeneous fixation of N2: Investigation of a novel mechanism for formation of NO. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 1973-1980	5.9	12
75	Experimental investigation and modelling of heat capacity, heat of fusion and melting interval of rocks. <i>Thermochimica Acta</i> , 2003 , 406, 129-142	2.9	12
74	Exhaust Oxidation of Unburned Hydrocarbons from Lean-Burn Natural Gas Engines. <i>Combustion Science and Technology</i> , 2000 , 157, 262-292	1.5	12
73	Biomass fly ash deposition in an entrained flow reactor. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 2689-2696	5.9	11
72	Impact of KCl impregnation on single particle combustion of wood and torrefied wood. <i>Fuel</i> , 2017 , 206, 684-689	7.1	11
71	Sulfur Release from Cement Raw Materials during Solid Fuel Combustion. <i>Energy & Company Solid</i> Fuels, 2011 , 25, 3917-3924	4.1	11
70	Formation of NO and N2O during Raw and Demineralized Biomass Char Combustion. <i>Energy & Energy & Energ</i>	4.1	10
69	Sulfur poisoning and regeneration of Rh-ZSM-5 catalysts for total oxidation of methane. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119176	21.8	10
68	Shedding light on the governing mechanisms for insufficient CO and H2 burnout in the presence of potassium, chlorine and sulfur. <i>Fuel</i> , 2020 , 273, 117762	7.1	10
67	Importance of Vanadium-Catalyzed Oxidation of SO2 to SO3 in Two-Stroke Marine Diesel Engines. <i>Energy & Energy </i>	4.1	10
66	Predicting Biomass Char Yield from High Heating Rate Devolatilization Using Chemometrics. <i>Energy & Energy Fuels</i> , 2018 , 32, 9572-9580	4.1	10
65	Sulphur Chemistry in Combustion I 2000 , 263-282		10
64	Experimental and CPFD study of gasBolid flow in a cold pilot calciner. <i>Powder Technology</i> , 2018 , 340, 99-115	5.2	10
63	Measurements of the NOx precursors and major species concentrations above the grate at a waste-to-energy plant. <i>Fuel</i> , 2018 , 222, 475-484	7.1	9
62	Experimental and modelling study on the influence of wood type, density, water content, and temperature on wood devolatilization. <i>Fuel</i> , 2020 , 260, 116410	7.1	9
61	Influence of H2O on NO formation during char oxidation of biomass. Fuel, 2019, 235, 1260-1265	7.1	9
60	Reduced chemical kinetic mechanisms for NOx emission prediction in biomass combustion. <i>International Journal of Chemical Kinetics</i> , 2012 , 44, 219-231	1.4	8

59	Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate-firing of biomass. <i>AICHE Journal</i> , 2013 , 59, 4314-4324	3.6	8
58	Experimental and Numerical Investigation of Gas-Phase Freeboard Combustion. Part 2: Fuel NO Formation. <i>Energy & Energy </i>	4.1	8
57	Investigation of a Mineral Melting Cupola Furnace. Part II. Mathematical Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6880-6892	3.9	8
56	High Heating Rate Devolatilization Kinetics of Pulverized Biomass Fuels. <i>Energy & amp; Fuels</i> , 2018 , 32, 12955-12961	4.1	8
55	The C2H2 + NO2 reaction: Implications for high pressure oxidation of C2H2/NOx mixtures. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 469-476	5.9	7
54	Kinetic Parameters for Biomass under Self-Ignition Conditions: Low-Temperature Oxidation and Pyrolysis. <i>Energy & Dysology & 2019</i> , 33, 8606-8619	4.1	7
53	The Use of Amine Reclaimer Wastes as a NOx Reduction Agent. <i>Energy Procedia</i> , 2013 , 37, 691-700	2.3	7
52	Simplified Model for Reburning Chemistry. Energy & Simplified Chemistry. Energy & Si	4.1	7
51	Comparative study of reactivity to CO2 of cokes used in stone wool production. <i>Fuel Processing Technology</i> , 2005 , 86, 551-563	7.2	7
50	Mechanistic Model for Ash Deposit Formation in Biomass Suspension Firing. Part 2: Model Verification by Use of Full-Scale Tests. <i>Energy & Energy &</i>	4.1	6
49	Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 10741-10752	3.6	6
48	CPFD simulation of petcoke and SRF co fi ring in a full s cale cement calciner. <i>Fuel Processing Technology</i> , 2019 , 196, 106153	7.2	6
47	Development of a Detailed Kinetic Model for Hydrogen Oxidation in Supercritical H2O/CO2 Mixtures. <i>Energy & Description</i> , 2020, 34, 15379-15388	4.1	6
46	Particulate emissions from a modern wood stove Influence of KCl. <i>Renewable Energy</i> , 2021 , 170, 1215-	1 <u>82</u> 7	6
45	Kinetic modeling of urea decomposition and byproduct formation. <i>Chemical Engineering Science</i> , 2021 , 230, 116138	4.4	6
44	Detailed Kinetic Mechanisms of Pollutant Formation in Combustion Processes. <i>Computer Aided Chemical Engineering</i> , 2019 , 603-645	0.6	5
43	Experimental and Kinetic Modeling Study of Nitroethane Pyrolysis at a Low Pressure: Competition Reactions in the Primary Decomposition. <i>Energy & Decomposition</i> 2016, 30, 7738-7745	4.1	5
42	SO2 Release as a Consequence of Alternative Fuel Combustion in Cement Rotary Kiln Inlets. <i>Energy</i> & Energy & E	4.1	5

(2003-2003)

41	Investigation of a Mineral Melting Cupola Furnace. Part I. Experimental Work. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6872-6879	3.9	5
40	Theoretical kinetics predictions for NH2I+IHO2. <i>Combustion and Flame</i> , 2022 , 236, 111787	5.3	5
39	Oxidation of methylamine. International Journal of Chemical Kinetics, 2020, 52, 893-906	1.4	5
38	Experimental and kinetic modeling study of oxidation of acetonitrile. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 575-583	5.9	5
37	Experimental investigation and mathematical modeling of the reaction between SO2(g) and CaCO3(s)-containing micelles in lube oil for large two-stroke marine diesel engines. <i>Chemical Engineering Journal</i> , 2020 , 388, 124188	14.7	4
36	Temperature and Pressure Dependence of the Reaction S + CS (+M) -pCS2 (+M). <i>Journal of Physical Chemistry A</i> , 2015 , 119, 7277-81	2.8	4
35	Influence of the support on rhodium speciation and catalytic activity of rhodium-based catalysts for total oxidation of methane. <i>Catalysis Science and Technology</i> , 2020 , 10, 6035-6044	5.5	4
34	Self-heating and thermal runaway of biomass Lab-scale experiments and modeling for conditions resembling power plant mills. <i>Fuel</i> , 2021 , 294, 120281	7.1	4
33	Mixed Flow Reactor Experiments and Modeling of Sulfuric Acid Neutralization in Lube Oil for Large Two-Stroke Diesel Engines. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 138-155	3.9	4
32	Acetaldehyde oxidation at elevated pressure. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 269-27	85.9	4
31	Quantitative K-Cl-S chemistry in thermochemical conversion processes using in situ optical diagnostics. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5219-5227	5.9	4
30	Aerodynamic and Physical Characterization of Refuse Derived Fuel. Energy & amp; Fuels, 2018, 32, 7685-	74.00	4
29	Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier. <i>Energy & Designation of Supplements</i> (LTCFB) Energy & Designation of the Company of th	4.1	3
28	Reaction of Sulfuric Acid in Lube Oil: Implications for Large Two-Stroke Diesel Engines 2017,		3
27	The Reaction Kinetics of Amino Radicals with Sulfur Dioxide. <i>Zeitschrift Fur Physikalische Chemie</i> , 2015 , 229, 1649-1661	3.1	3
26	Devolatilization and Combustion of Tire Rubber and Pine Wood in a Pilot Scale Rotary Kiln. <i>Energy & Amp; Fuels</i> , 2012 , 26, 854-868	4.1	3
25	The rate constant for the . Chemical Physics Letters, 2009, 475, 40-43	2.5	3
24	Design concept to reduce fuel NOX in catalytic combustion of gasified biomass. <i>AICHE Journal</i> , 2003 , 49, 2149-2157	3.6	3

23	Kinetic modeling of carbon monoxide oxidation and water gas shift reaction in supercritical water. Journal of Supercritical Fluids, 2021 , 171, 105165	4.2	3
22	Modeling Potassium Capture by Aluminosilicate, Part 1: Kaolin. <i>Energy & Camp; Fuels</i> , 2021 , 35, 13984-13	39 <u>4</u> &	3
21	Experiments and modeling of single plastic particle conversion in suspension. <i>Fuel Processing Technology</i> , 2018 , 178, 213-225	7.2	2
20	Predicted thermochemistry and unimolecular kinetics of nitrous sulfide. <i>Journal of Chemical Physics</i> , 2011 , 135, 094301	3.9	2
19	Selective Noncatalytic Reduction of NOx Using Ammonium Sulfate. Energy & Camp; Fuels, 2021, 35, 1239	92-4.24(022
18	Effect of gasification reactions on biomass char conversion under pulverized fuel combustion conditions. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 3919-3928	5.9	2
17	Release of P from Pyrolysis, Combustion, and Gasification of Biomass Model Compound Study. <i>Energy & Energy & E</i>	4.1	2
16	An experimental and modeling study on auto-ignition kinetics of ammonia/methanol mixtures at intermediate temperature and high pressure. <i>Combustion and Flame</i> , 2022 , 242, 112160	5.3	2
15	Challenges in Kinetic modeling of ammonia pyrolysis. Fuel Communications, 2022, 10, 100049	1	1
14	Modeling Potassium Capture by Aluminosilicate, Part 2: Coal Fly Ash. <i>Energy & amp; Fuels</i> , 2021 , 35, 19	72 5. 19	736
13	Modeling the decomposition and byproduct formation of a urea-water-solution droplet. <i>Chemical Engineering Science</i> , 2021 , 237, 116587	4.4	1
12	Determination of Zero Dimensional, Apparent Devolatilization Kinetics for Biomass Particles at Suspension Firing Conditions. <i>Energies</i> , 2021 , 14, 1018	3.1	1
11	NO emission from cement calciners firing coal and petcoke: A CPFD study. <i>Applications in Energy and Combustion Science</i> , 2021 , 5, 100023	0.8	1
10	Evaluation of a Semiglobal Approach for Modeling Methane/n-Heptane Dual-Fuel Ignition. <i>Energy & Energy Fuels</i> , 2021 , 35, 14042-14050	4.1	1
9	Influence of potassium on benzene and soot formation in fuel-rich oxidation of methane in a laminar flow reactor. <i>Combustion and Flame</i> , 2021 , 234, 111624	5.3	1
8	Kinetic Model for High-Pressure Methanol Oxidation in Gas Phase and Supercritical Water. <i>Energy & Energy Fuels</i> , 2022 , 36, 575-588	4.1	1
7	Spillback nozzle characterization using pulsating LED shadowgraphy. <i>Experimental Thermal and Fluid Science</i> , 2020 , 119, 110172	3	О
6	Assessment of the effect of alkali chemistry on post-flame aerosol formation during oxy-combustion of biomass. <i>Fuel</i> , 2021 , 311, 122521	7.1	O

LIST OF PUBLICATIONS

5	Theoretical and kinetic modeling study of chloromethane (CH3Cl) pyrolysis and oxidation. International Journal of Chemical Kinetics, 2021 , 53, 403-418	1.4	O
4	A reaction mechanism for ozone dissociation and reaction with hydrogen at elevated temperature. <i>Fuel</i> , 2022 , 322, 124138	7.1	O
3	Reaction Mechanisms 2017 , 481-520		
2	Application of a Mathematical Model of a Mineral Melting Cupola. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6893-6897	3.9	
1	Oxidation Kinetics of Methane and Methane/Methanol Mixtures in Supercritical Water. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 3889-3899	3.9	