Janarthanan Pushpamalar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils. Trends in Food Science and Technology, 2022, 123, 69-86.	15.1	18
2	Drug Delivery Towards Cancer. Nanotechnology in the Life Sciences, 2021, , 225-240.	0.6	0
3	Nanotechnology in Tissue Engineering and Implant Development. Nanotechnology in the Life Sciences, 2021, , 241-265.	0.6	0
4	Delivery of Drug Payloads to Organs and Organ-Systems. Nanotechnology in the Life Sciences, 2021, , 199-224.	0.6	1
5	Development of Polymer-Assisted Nanoparticles and Nanogels for Cancer Therapy: An Update. Gels, 2021, 7, 60.	4.5	31
6	Development of a Polysaccharide-Based Hydrogel Drug Delivery System (DDS): An Update. Gels, 2021, 7, 153.	4.5	45
7	Lycopene-loaded nanostructured lipid carrier from carboxymethyl oil palm empty fruit bunch cellulose for topical administration. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100049.	2.6	4
8	Fabrication of radiation cross-linked diclofenac sodium loaded carboxymethyl sago pulp/chitosan hydrogel for enteric and sustained drug delivery. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100084.	2.6	13
9	Hydrogel of Natural as a Potential Vehicle for Colon-Targeted. Methods in Molecular Biology, 2021, 2211, 171-182.	0.9	5
10	Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110713.	5.0	57
11	Recent advancements in the applications of carbon nanodots: exploring the rising star of nanotechnology. Nanoscale Advances, 2020, 2, 1760-1773.	4.6	37
12	Electrospun chitosan/polyethylene-oxide (PEO)/halloysites (HAL) membranes for bone regeneration applications. Applied Clay Science, 2020, 190, 105601.	5.2	59
13	Adsorption of methylene blue onto carboxymethyl sago pulp-immobilized sago waste hydrogel beads. International Journal of Environmental Science and Technology, 2019, 16, 2047-2058.	3.5	24
14	Carboxymethyl sago pulp/chitosan hydrogel as an immobilization medium for activated sludge for <i>p</i> â€nitrophenol biodegradation. Journal of Applied Polymer Science, 2019, 136, 47531.	2.6	3
15	Synthesis and Characterization of a Novel pH-Sensitive Aluminum Crosslinked Carboxymethyl Tragacanth Beads for Extended and Enteric Drug Delivery. Journal of Polymers and the Environment, 2019, 27, 1516-1528.	5.0	13
16	Application of Metal Nanoparticle–Hydrogel Composites in Tissue Regeneration. Bioengineering, 2019, 6, 17.	3.5	96
17	Spray dried solid dispersions of piroxicam in carboxymethyl sago cellulose using aqueous solvents: A simple, novel and green approach to produce enteric microparticles with enhanced dissolution. Drying Technology, 2019, 37, 1191-1200.	3.1	5
18	Encapsulation of red palm oil in carboxymethyl sago cellulose beads by emulsification and vibration technology: Physicochemical characterization and inÂvitro digestion. Journal of Food Engineering, 2018, 231, 10-21.	5.2	17

#	Article	IF	CITATIONS
19	Nanotubes in nanofibers: Antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. Applied Clay Science, 2018, 160, 95-105.	5.2	64
20	Eco-friendly smart hydrogels for soil conditioning and sustain release fertilizer. International Journal of Environmental Science and Technology, 2018, 15, 2059-2074.	3.5	30
21	Smart Hydrogel of Carboxymethyl Cellulose Grafted Carboxymethyl Polyvinyl Alcohol and Properties Studied for Future Material Applications. Journal of Polymers and the Environment, 2018, 26, 2061-2071.	5.0	26
22	Influence of Ispaghula and Zein Coating on Ibuprofen-Loaded Alginate Beads Prepared by Vibration Technology: Physicochemical Characterization and Release Studies. Scientia Pharmaceutica, 2018, 86, 24.	2.0	3
23	Optimisation of preparation conditions for Ti nanowires and suitability as an antibacterial material. IET Nanobiotechnology, 2018, 12, 429-435.	3.8	5
24	Developing of a magnetite film of carboxymethyl cellulose grafted carboxymethyl polyvinyl alcohol (CMC- g -CMPVA) for copper removal. Carbohydrate Polymers, 2017, 173, 619-630.	10.2	35
25	Adsorption of methylene blue onto powdered activated carbon immobilized in a carboxymethyl sago pulp hydrogel. Journal of Applied Polymer Science, 2017, 134, .	2.6	23
26	Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp. Applied Sciences (Switzerland), 2016, 6, 170.	2.5	35
27	Biodegradable Polysaccharides for Controlled Drug Delivery. ChemPlusChem, 2016, 81, 504-514.	2.8	97
28	Dual crosslinked carboxymethyl sago pulp/pectin hydrogel beads as potential carrier for colonâ€ŧargeted drug delivery. Journal of Applied Polymer Science, 2016, 133, .	2.6	13
29	Carboxymethyl sago pulp/carboxymethyl sago starch hydrogel: Effect of polymer mixing ratio and study of controlled drug release. Journal of Applied Polymer Science, 2016, 133, .	2.6	15
30	Electron beam radiation mediated green synthesis of silver nanoparticles using carboxymethyl sago pulp obtained from sago waste. Polymer, 2016, 86, 147-156.	3.8	9
31	Iron cross-linked carboxymethyl cellulose–gelatin complex coacervate beads for sustained drug delivery. Chemical Papers, 2016, 70, .	2.2	13
32	Chitosan/Cellulose/Halloysite Membranes Produced Using Solvent Casting Method. Polymers and Polymer Composites, 2015, 23, 325-332.	1.9	6
33	Dual Cross-Linked Carboxymethyl Sago Pulp-Gelatine Complex Coacervates for Sustained Drug Delivery. Polymers, 2015, 7, 1088-1105.	4.5	17
34	Radiation cross-linked carboxymethyl sago pulp hydrogels loaded with ciprofloxacin: Influence of irradiation on gel fraction, entrapped drug and in vitro release. Radiation Physics and Chemistry, 2015, 106, 213-222.	2.8	23
35	Absorption characterization of Ca ²⁺ , Na ⁺ , and K ⁺ on irradiation crosslinked carboxymethyl sago pulp hydrogel. Journal of Applied Polymer Science, 2013, 128, 1828-1833.	2.6	0
36	Preparation of carboxymethyl sago pulp hydrogel from sago waste by electron beam irradiation and swelling behavior in water and various pH media. Journal of Applied Polymer Science, 2013, 128, 451-459.	2.6	31

#	Article	IF	CITATIONS
37	Aluminium and radiation cross-linked carboxymethyl sago pulp beads for colon targeted delivery. Carbohydrate Polymers, 2013, 94, 356-363.	10.2	31
38	Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate Polymers, 2006, 64, 312-318.	10.2	316
39	Thermal behavior and surface morphology studies on polystyrene grafted sago starch. Journal of Applied Polymer Science, 2003, 90, 2053-2058.	2.6	36
40	Radiation Cross-Linked Carboxymethyl Sago Pulp Discs for Sustained Drug Delivery: Ciprofloxacin Uptake and Physicochemical Characterization. Journal of Applied Pharmaceutical Science, 0, , .	1.0	1