
Glen M Deloid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of ingested nanomaterials on tissue distribution of co-ingested zinc and iron in normal and zinc-deficient mice. NanoImpact, 2021, 21, 100279.	2.4	2
2	Effects of ingested nanocellulose and nanochitosan materials on carbohydrate digestion and absorption in an <i>in vitro</i> small intestinal epithelium model. Environmental Science: Nano, 2021, 8, 2554-2568.	2.2	6
3	Fluorescently Labeled Cellulose Nanofibers for Environmental Health and Safety Studies. Nanomaterials, 2021, 11, 1015.	1.9	13
4	Co-exposure to boscalid and TiO2 (E171) or SiO2 (E551) downregulates cell junction gene expression in small intestinal epithelium cellular model and increases pesticide translocation. NanoImpact, 2021, 22, 100306.	2.4	12
5	Biotransformations and cytotoxicity of graphene and inorganic two-dimensional nanomaterials using simulated digestions coupled with a triculture <i>in vitro</i> model of the human gastrointestinal epithelium. Environmental Science: Nano, 2021, 8, 3233-3249.	2.2	10
6	Toxicity, uptake, and nuclear translocation of ingested micro-nanoplastics in an in vitro model of the small intestinal epithelium. Food and Chemical Toxicology, 2021, 158, 112609.	1.8	31
7	Evaluation of the cytotoxic and cellular proteome impacts of food-grade TiO2 (E171) using simulated gastrointestinal digestions and a tri-culture small intestinal epithelial model. NanoImpact, 2020, 17, 100202.	2.4	30
8	Physicochemical and Morphological Transformations of Chitosan Nanoparticles across the Gastrointestinal Tract and Cellular Toxicity in an In Vitro Model of the Small Intestinal Epithelium. Journal of Agricultural and Food Chemistry, 2020, 68, 358-368.	2.4	19
9	Effects of ingested food-grade titanium dioxide, silicon dioxide, iron (III) oxide and zinc oxide nanoparticles on an in vitro model of intestinal epithelium: Comparison between monoculture vs. a mucus-secreting coculture model. NanoImpact, 2020, 17, 100209.	2.4	24
10	A high-throughput method to characterize the gut bacteria growth upon engineered nanomaterial treatment. Environmental Science: Nano, 2020, 7, 3155-3166.	2.2	2
11	Cytotoxicity and cellular proteome impact of cellulose nanocrystals using simulated digestion and an in vitro small intestinal epithelium cellular model. NanoImpact, 2020, 20, 100269.	2.4	10
12	Lipid and protein corona of food-grade TiO2 nanoparticles in simulated gastrointestinal digestion. NanoImpact, 2020, 20, 100272.	2.4	32
13	SON DNAâ€binding protein mediates macrophage autophagy and responses to intracellular infection. FEBS Letters, 2020, 594, 2782-2799.	1.3	1
14	Effects of ingested nanocellulose on intestinal microbiota and homeostasis in Wistar Han rats. NanoImpact, 2020, 18, 100216.	2.4	44
15	Co-exposure to the food additives SiO ₂ (E551) or TiO ₂ (E171) and the pesticide boscalid increases cytotoxicity and bioavailability of the pesticide in a tri-culture small intestinal epithelium model: potential health implications. Environmental Science: Nano, 2019, 6, 2786-2800.	2.2	29
16	Safer-by-design flame-sprayed silicon dioxide nanoparticles: the role of silanol content on ROS generation, surface activity and cytotoxicity. Particle and Fibre Toxicology, 2019, 16, 40.	2.8	48
17	Toxicological effects of ingested nanocellulose in <i>in vitro</i> intestinal epithelium and <i>in vivo</i> rat models. Environmental Science: Nano, 2019, 6, 2105-2115.	2.2	93
18	Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose. Cellulose, 2018, 25, 2303-2319.	2.4	45

GLEN M DELOID

#	Article	IF	CITATIONS
19	Development of reference metal and metal oxide engineered nanomaterials for nanotoxicology research using high throughput and precision flame spray synthesis approaches. NanoImpact, 2018, 10, 26-37.	2.4	35
20	Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2018, 410, 6155-6164.	1.9	43
21	Reducing Intestinal Digestion and Absorption of Fat Using a Nature-Derived Biopolymer: Interference of Triglyceride Hydrolysis by Nanocellulose. ACS Nano, 2018, 12, 6469-6479.	7.3	148
22	Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose. Cellulose, 2018, 25, 2303-2319.	2.4	13
23	Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nature Protocols, 2017, 12, 355-371.	5.5	224
24	Free actin impairs macrophage bacterial defenses via scavenger receptor MARCO interaction with reversal by plasma gelsolin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L1018-L1028.	1.3	21
25	Immunomodulators targeting MARCO expression improve resistance to postinfluenza bacterial pneumonia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L138-L153.	1.3	36
26	Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model. NanoImpact, 2017, 6, 39-54.	2.4	25
27	Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions. Nanotoxicology, 2017, 11, 1087-1101.	1.6	29
28	An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Particle and Fibre Toxicology, 2017, 14, 40.	2.8	112
29	Effects of engineered nanomaterial exposure on macrophage innate immune function. NanoImpact, 2016, 2, 70-81.	2.4	34
30	The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact, 2016, 3-4, 47-57.	2.4	103
31	Advanced computational modeling for in vitro nanomaterial dosimetry. Particle and Fibre Toxicology, 2015, 12, 32.	2.8	131
32	A critical review of <i>in vitro</i> dosimetry for engineered nanomaterials. Nanomedicine, 2015, 10, 3015-3032.	1.7	82
33	A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures. Environmental Science: Nano, 2014, 1, 15-26.	2.2	49
34	Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nature Communications, 2014, 5, 3514.	5.8	247
35	Sulforaphane improves MARCO expression, bacterial clearance and survival in postâ€influenza bacterial pneumonia (145.1). FASEB Journal, 2014, 28, 145.1.	0.2	0
36	Interactions of engineered nanomaterials in physiological media and implications for <i>in vitro</i> dosimetry. Nanotoxicology, 2013, 7, 417-431.	1.6	190

Glen M Deloid

#	Article	IF	CITATIONS
37	Genome-Wide RNAi Screen in IFN-γ-Treated Human Macrophages Identifies Genes Mediating Resistance to the Intracellular Pathogen Francisella tularensis. PLoS ONE, 2012, 7, e31752.	1.1	24
38	In situ quantification of macrophage AIM2 inflammasome activation during Francisella tularensis infection by fluorescence proximity ligation. FASEB Journal, 2012, 26, 402.1.	0.2	0
39	Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies. Inhalation Toxicology, 2010, 22, 107-116.	0.8	55
40	Heterogeneity in Macrophage Phagocytosis of Staphylococcus aureus Strains: High-Throughput Scanning Cytometry-Based Analysis. PLoS ONE, 2009, 4, e6209.	1.1	29
41	Signaling pathways required for macrophage scavenger receptor-mediated phagocytosis: analysis by scanning cytometry. Respiratory Research, 2008, 9, 59.	1.4	49