Kyril M Solntsev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676640/publications.pdf

Version: 2024-02-01

90 papers

4,691 citations

94381 37 h-index 98753 67 g-index

93 all docs 93
docs citations

93 times ranked 4091 citing authors

#	Article	IF	Citations
1	Enhancing Student Interest in a General Chemistry Course via Short, In-Class Topical Presentations: A Qualitative Assessment. Journal of Chemical Education, 2022, 99, 2743-2746.	1.1	1
2	Rapid subcellular calcium responses and dynamics by calcium sensor G-CatchER+. IScience, 2021, 24, 102129.	1.9	19
3	Formation of Noncovalent Complexes between Complex Mixtures of Polycyclic Aromatic Hydrocarbons (Asphaltenes) and Substituted Aromatics Studied by Fluorescence Spectroscopy. Energy &	2.5	7
4	Isolation of biologically active compounds from mangrove sediments. Analytical and Bioanalytical Chemistry, 2019, 411, 6521-6529.	1.9	3
5	Designing redder and brighter fluorophores by synergistic tuning of ground and excited states. Chemical Communications, 2019, 55, 2537-2540.	2.2	40
6	Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design. Journal of Physical Chemistry B, 2019, 123, 3804-3821.	1.2	32
7	Thermochemiluminescent peroxide crystals. Nature Communications, 2019, 10, 997.	5.8	16
8	Synthesis, structure, and photoluminescence properties of lanthanide based metal organic frameworks and a cadmium coordination polymer derived from 2,2′-diamino-trans 4,4′-stilbenedicarboxylate. Inorganica Chimica Acta, 2018, 478, 243-249.	1.2	1
9	Turning on Solidâ€State Fluorescence with Light. Angewandte Chemie - International Edition, 2018, 57, 9538-9542.	7.2	6
10	Anschalten von Festkörperfluoreszenz mit Licht. Angewandte Chemie, 2018, 130, 9683-9687.	1.6	1
11	Anthracene-Based Lanthanide Metal-Organic Frameworks: Synthesis, Structure, Photoluminescence, and Radioluminescence Properties. Crystals, 2018, 8, 53.	1.0	10
12	Unveiling Structural Motions of a Highly Fluorescent Superphotoacid by Locking and Fluorinating the GFP Chromophore in Solution. Journal of Physical Chemistry Letters, 2017, 8, 5921-5928.	2.1	40
13	pH-Sensitive fluorophores from locked GFP chromophores by a non-alternant analogue of the photochemical meta effect. Physical Chemistry Chemical Physics, 2016, 18, 26703-26711.	1.3	9
14	Excited-State Dynamics of Oxyluciferin in Firefly Luciferase. Journal of the American Chemical Society, 2016, 138, 16252-16258.	6.6	40
15	Conjugates of Benzoxazole and GFP Chromophore with Aggregationâ€Induced Enhanced Emission: Influence of the Chain Length on the Formation of Particles and on the Dye Uptake by Living Cells. Small, 2016, 12, 6602-6612.	5.2	28
16	Kinetics of intra- and intermolecular excited-state proton transfer of b < i > i'm < /i > - (2-hydroxynaphthyl-1)-decanoic acid in homogeneous and micellar solutions. Methods and Applications in Fluorescence, 2016, 4, 014001.	1.1	2
17	Themed issue on shape-responsive fluorophores. Journal of Materials Chemistry C, 2016, 4, 2638-2639.	2.7	5
18	Effects of the benzoxazole group on green fluorescent protein chromophore crystal structure and solid state photophysics. Journal of Materials Chemistry C, 2016, 4, 2793-2801.	2.7	21

#	Article	IF	CITATIONS
19	Novel Mechanism of Bioluminescence: Oxidative Decarboxylation of a Moiety Adjacent to the Light Emitter of <i>Fridericia (i) Luciferin. Angewandte Chemie, 2015, 127, 7171-7173.</i>	1.6	3
20	KillerOrange, a Genetically Encoded Photosensitizer Activated by Blue and Green Light. PLoS ONE, 2015, 10, e0145287.	1.1	56
21	Novel uses of fluorescent proteins. Current Opinion in Chemical Biology, 2015, 27, 1-9.	2.8	96
22	Competition and Interplay of Various Intermolecular Interactions in Ultrafast Excited-State Proton and Electron Transfer Reactions. Journal of Physical Chemistry B, 2015, 119, 2444-2453.	1.2	12
23	Effect of Ca ²⁺ on the Steady-State and Time-Resolved Emission Properties of the Genetically Encoded Fluorescent Sensor CatchER. Journal of Physical Chemistry B, 2015, 119, 2103-2111.	1.2	18
24	Green Fluorescent Protein with Anionic Tryptophan-Based Chromophore and Long Fluorescence Lifetime. Biophysical Journal, 2015, 109, 380-389.	0.2	56
25	Fluorescence imaging using synthetic GFP chromophores. Current Opinion in Chemical Biology, 2015, 27, 64-74.	2.8	120
26	Novel Mechanism of Bioluminescence: Oxidative Decarboxylation of a Moiety Adjacent to the Light Emitter of <i>Fridericia </i> Luciferin. Angewandte Chemie - International Edition, 2015, 54, 7065-7067.	7.2	31
27	Hidden photoinduced reactivity of the blue fluorescent protein mKalama1. Physical Chemistry Chemical Physics, 2015, 17, 12472-12485.	1.3	14
28	Redâ€Shifted Fluorescent Aminated Derivatives of a Conformationally Locked GFP Chromophore. Chemistry - A European Journal, 2014, 20, 13234-13241.	1.7	68
29	Steady-state and time-resolved spectroscopic studies of green-to-red photoconversion of fluorescent protein Dendra2. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 280, 5-13.	2.0	13
30	Chromophore Photoreduction in Red Fluorescent Proteins Is Responsible for Bleaching and Phototoxicity. Journal of Physical Chemistry B, 2014, 118, 4527-4534.	1.2	55
31	Spectral and redox properties of the GFP synthetic chromophores as a function of pH in buffered media. Chemical Communications, 2013, 49, 7788.	2.2	31
32	Design and Application of Fluorescent Calcium Binding Proteins with Fast Kinetics. Biophysical Journal, 2013, 104, 530a.	0.2	0
33	Optically Modulatable Blue Fluorescent Proteins. Journal of the American Chemical Society, 2013, 135, 16410-16417.	6.6	33
34	A synthetic approach to GFP chromophore analogs from 3-azidocinnamates. Role of methyl rotors in chromophore photophysics. Chemical Communications, 2013, 49, 5778.	2.2	29
35	Self-Assembled Benzophenone Bis-urea Macrocycles Facilitate Selective Oxidations by Singlet Oxygen. Journal of Organic Chemistry, 2013, 78, 5568-5578.	1.7	25
36	Microcrystals with Enhanced Emission Prepared from Hydrophobic Analogues of the Green Fluorescent Protein Chromophore via Reprecipitation. Langmuir, 2013, 29, 14718-14727.	1.6	29

#	Article	IF	Citations
37	Excited-state proton transfer in N-methyl-6-hydroxyquinolinium salts: solvent and temperature effects. Physical Chemistry Chemical Physics, 2012, 14, 8964.	1.3	42
38	Ultrafast Studies of the Photophysics of Cis and Trans States of the Green Fluorescent Protein Chromophore. Journal of Physical Chemistry Letters, 2012, 3, 2298-2302.	2.1	28
39	Photoinduced Dynamics of Oxyluciferin Analogues: Unusual Enol "Superâ€photoacidity and Evidence for Keto–Enol Isomerization. Journal of the American Chemical Society, 2012, 134, 16452-16455.	6.6	56
40	Fluorescence resonance energy transfer in recognition-mediated polymer-quantum dot assemblies. Polymer Chemistry, 2012, 3, 3072.	1.9	3
41	Poly-(bis(($\hat{l}^{1}/44$ -1,4-benzenedicarboxylato)-bis($\hat{l}^{1}/42$ -N,N-dimethylformamide)-(nitrato)-gadolinium (III))) metal organic framework: Synthesis, magnetic and luminescence properties. Inorganica Chimica Acta, 2012, 391, 1-9.	1.2	14
42	Collapse and Recovery of Green Fluorescent Protein Chromophore Emission through Topological Effects. Accounts of Chemical Research, 2012, 45, 171-181.	7.6	108
43	Tryptophan-based chromophore in fluorescent proteins can be anionic. Scientific Reports, 2012, 2, 608.	1.6	35
44	Conformationally Locked Chromophores as Models of Excited-State Proton Transfer in Fluorescent Proteins. Journal of the American Chemical Society, 2012, 134, 6025-6032.	6.6	164
45	Diffusional effects on the reversible excited-state proton transfer. From experiments to Brownian dynamics simulations. Physical Chemistry Chemical Physics, 2011, 13, 14914.	1.3	34
46	Chemically Modulating the Photophysics of the GFP Chromophore. Journal of Physical Chemistry B, 2011, 115, 1571-1577.	1.2	55
47	What Drives the Redox Properties of Model Green Fluorescence Protein Chromophores?. Journal of Physical Chemistry Letters, 2011, 2, 2593-2597.	2.1	23
48	Reactive oxygen species in photochemistry of the red fluorescent protein "Killer Red― Chemical Communications, 2011, 47, 4887.	2.2	107
49	Hydroxydialkylamino Cruciforms: Amphoteric Materials with Unique Photophysical Properties. Chemistry - A European Journal, 2011, 17, 3112-3119.	1.7	21
50	Waterâ€Soluble Distyrylbenzenes: One Core with Two Sensory Responses—Turnâ€On and Ratiometric. Chemistry - A European Journal, 2011, 17, 13726-13731.	1.7	8
51	Unsymmetrical Cruciforms. Journal of Organic Chemistry, 2010, 75, 523-534.	1.7	54
52	Topochemistry and Photomechanical Effects in Crystals of Green Fluorescent Protein-like Chromophores: Effects of Hydrogen Bonding and Crystal Packing. Journal of the American Chemical Society, 2010, 132, 5845-5857.	6.6	160
53	Inhibition of twisting of a green fluorescent protein-like chromophore by metal complexation. Chemical Communications, 2010, 46, 5686.	2.2	73
54	Activation and Tuning of Green Fluorescent Protein Chromophore Emission by Alkyl Substituent-Mediated Crystal Packing. Journal of the American Chemical Society, 2009, 131, 662-670.	6.6	107

#	Article	IF	Citations
55	Excitedâ€State Proton Transfer in Chiral Environments: Photoracemization of BINOLs. Israel Journal of Chemistry, 2009, 49, 227-233.	1.0	28
56	Hydroxycruciforms: Amineâ€Responsive Fluorophores. Chemistry - A European Journal, 2008, 14, 4503-4510.	1.7	82
57	The effect of pressure on the excited-state proton transfer in the wild-type green fluorescent protein. Chemical Physics Letters, 2008, 455, 303-306.	1.2	9
58	Anomalous Photophysics of Bis(hydroxystyryl)benzenes: A Twist on the Para/Meta Dichotomy. Organic Letters, 2008, 10, 2429-2432.	2.4	25
59	Optical Spectroscopy of Grafted Poly(p-phenyleneethynylene)s in Water and Waterâ^'DMF Mixtures. Macromolecules, 2008, 41, 1112-1117.	2.2	24
60	Isomerization in Fluorescent Protein Chromophores Involves Addition/Elimination. Journal of the American Chemical Society, 2008, 130, 14096-14098.	6.6	59
61	Meta and Para Effects in the Ultrafast Excited-State Dynamics of the Green Fluorescent Protein Chromophores. Journal of Physical Chemistry B, 2008, 112, 2700-2711.	1.2	92
62	The Meta <i>-</i> Green Fluorescent Protein Chromophore. Journal of the American Chemical Society, 2007, 129, 10084-10085.	6.6	67
63	Hydroxy-cruciforms. Chemical Communications, 2007, , 2127-2129.	2.2	37
64	Reversible Attachment of Perylenediimide Fluorophore to Glass Surfaces via Strong Hydrogen-Bonding. Langmuir, 2007, 23, 6227-6232.	1.6	6
65	Ultrafast Excited-State Dynamics in the Green Fluorescent Protein Variant S65T/H148D. 3. Short- and Long-Time Dynamics of the Excited-State Proton Transfer. Biochemistry, 2007, 46, 12026-12036.	1.2	42
66	Solvatochromism of the Green Fluorescence Protein Chromophore and Its Derivatives. Journal of the American Chemical Society, 2006, 128, 12038-12039.	6.6	209
67	Probing the Decay Coordinate of the Green Fluorescent Protein:Â Arrest of Cisâ ⁻ Trans Isomerization by the Protein Significantly Narrows the Fluorescence Spectra. Journal of the American Chemical Society, 2006, 128, 1540-1546.	6.6	76
68	Effects of long-chain alkyl substituents on the protolytic reactions of naphthols. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 175, 178-191.	2.0	8
69	Excited-State Structure Determination of the Green Fluorescent Protein Chromophore. Journal of the American Chemical Society, 2005, 127, 11214-11215.	6.6	69
70	Excited-State Proton Transfer in Gas-Expanded Liquids:  The Roles of Pressure and Composition in Supercritical CO2/Methanol Mixtures. Journal of the American Chemical Society, 2005, 127, 11890-11891.	6.6	19
71	6-Hydroxyquinoline-N-oxides: A New Class of "Super―Photoacids1. Journal of the American Chemical Society, 2005, 127, 8534-8544.	6.6	56
72	Excited-State Proton Transfer Reactions of 10-Hydroxycamptothecin1. Journal of the American Chemical Society, 2004, 126, 12701-12708.	6.6	53

#	Article	IF	Citations
73	Protolytic Photodissociation and Proton-Induced Quenching of 1-Naphthol and 2-Octadecyl-1-Naphthol in Micelles. Journal of Physical Chemistry A, 2004, 108, 8212-8222.	1.1	16
74	Study of the Long-Time Fluorescence Tail of the Green Fluorescent Protein. Journal of Physical Chemistry B, 2004, 108, 8043-8053.	1.2	25
75	Photochemistry of "Super―Photoacids. 3. Excited-State Proton Transfer from Perfluoroalkylsulfonyl-Substituted 2-Naphthols. Journal of Physical Chemistry A, 2002, 106, 3114-3122.	1.1	36
76	Excited-State Proton Transfer in Chiral Environments. 1. Chiral Solvents. Journal of the American Chemical Society, 2002, 124, 9046-9047.	6.6	30
77	Excited-State Proton Transfer: From Constrained Systems to "Super―Photoacids to Superfast Proton Transferâ€. Accounts of Chemical Research, 2002, 35, 19-27.	7.6	732
78	Excited State Proton Transfer in Reverse Micelles. Journal of the American Chemical Society, 2002, 124, 7539-7547.	6.6	139
79	Challenge in Accurate Measurement of Fast Reversible Bimolecular Reaction. Journal of Physical Chemistry A, 2001, 105, 5868-5876.	1.1	33
80	Molecular Beam Studies of the "Super―Photoacid 5-Cyano-2-naphthol in Solvent Clusters. Journal of Physical Chemistry A, 2001, 105, 6393-6401.	1.1	25
81	Experimental Evidence for a Kinetic Transition in Reversible Reactions. Physical Review Letters, 2001, 86, 3427-3430.	2.9	50
82	Dual asymptotic behavior in geminate diffusion-influenced reaction. Chemical Physics Letters, 2000, 320, 262-268.	1.2	27
83	Photochemistry of "Super―Photoacids. 2. Excited-State Proton Transfer in Methanol/Water Mixtures. Journal of Physical Chemistry A, 2000, 104, 4658-4669.	1.1	154
84	Excited-state reversible geminate reaction. I. Two different lifetimes. Journal of Chemical Physics, 1999, 110, 2164-2174.	1.2	87
85	Photochemistry of "Super―Photoacids. Solvent Effects. Journal of Physical Chemistry A, 1999, 103, 6984-6997.	1.1	100
86	Photoinduced electron transfer and strand cleavage in pyrenyl-DNA complexes and adducts. Journal of Physical Organic Chemistry, 1998, 11, 561-565.	0.9	15
87	Solvatochromism of \hat{I}^2 -Naphthol. Journal of Physical Chemistry A, 1998, 102, 9599-9606.	1.1	96
88	Solvatochromic Shifts of "Super―Photoacids. Journal of the American Chemical Society, 1998, 120, 7981-7982.	6.6	102
89	Photoinduced electron transfer and strand cleavage in pyrenyl–DNA complexes and adducts. , 1998, 11, 561.		1
90	Design and Implementation of"Super―Photoacids. , 0, , 417-439.		0