List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676559/publications.pdf Version: 2024-02-01

YASUSHI KONDO

#	Article	IF	CITATIONS
1	Input-Output Analysis of Waste Management. Journal of Industrial Ecology, 2002, 6, 39-63.	2.8	244
2	The Waste Inputâ€Output Approach to Materials Flow Analysis. Journal of Industrial Ecology, 2007, 11, 50-63.	2.8	156
3	Global Flows of Critical Metals Necessary for Low-Carbon Technologies: The Case of Neodymium, Cobalt, and Platinum. Environmental Science & Technology, 2014, 48, 1391-1400.	4.6	142
4	MaTrace: Tracing the Fate of Materials over Time and Across Products in Open-Loop Recycling. Environmental Science & Technology, 2014, 48, 7207-7214.	4.6	94
5	An Analysis of Sustainable Consumption by the Waste Input-Output Model. Journal of Industrial Ecology, 2008, 9, 201-219.	2.8	85
6	Global Mining Risk Footprint of Critical Metals Necessary for Low-Carbon Technologies: The Case of Neodymium, Cobalt, and Platinum in Japan. Environmental Science & Technology, 2015, 49, 2022-2031.	4.6	84
7	Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model. Resources, Conservation and Recycling, 2017, 116, 84-93.	5.3	84
8	A waste input–output life-cycle cost analysis of the recycling of end-of-life electrical home appliances. Ecological Economics, 2006, 57, 494-506.	2.9	82
9	Toward the efficient recycling of alloying elements from end of life vehicle steel scrap. Resources, Conservation and Recycling, 2015, 100, 11-20.	5.3	82
10	Estimates of Embodied Global Energy and Air-Emission Intensities of Japanese Products for Building a Japanese Input–Output Life Cycle Assessment Database with a Global System Boundary. Environmental Science & Technology, 2012, 46, 9146-9154.	4.6	79
11	Simultaneous Material Flow Analysis of Nickel, Chromium, and Molybdenum Used in Alloy Steel by Means of Input–Output Analysis. Environmental Science & Technology, 2013, 47, 4653-4660.	4.6	79
12	IMPROVING THE COMPLETENESS OF PRODUCT CARBON FOOTPRINTS USING A GLOBAL LINK INPUT–OUTPUT MODEL: THE CASE OF JAPAN. Economic Systems Research, 2009, 21, 267-290.	1.2	78
13	Quality- and Dilution Losses in the Recycling of Ferrous Materials from End-of-Life Passenger Cars: Input-Output Analysis under Explicit Consideration of Scrap Quality. Environmental Science & Technology, 2012, 46, 9266-9273.	4.6	73
14	Evaluating alternative life-cycle strategies for electrical appliances by the waste input-output model. International Journal of Life Cycle Assessment, 2004, 9, 236.	2.2	69
15	Quantifying Recycling and Losses of Cr and Ni in Steel Throughout Multiple Life Cycles Using MaTrace-Alloy. Environmental Science & Technology, 2017, 51, 9469-9476.	4.6	66
16	Role of Motor Vehicle Lifetime Extension in Climate Change Policy. Environmental Science & Technology, 2011, 45, 1184-1191.	4.6	62
17	Hypothetical extractions from a global perspective. Economic Systems Research, 2019, 31, 505-519.	1.2	61
18	Waste input–output linear programming model with its application to eco-efficiency analysis. Economic Systems Research, 2005, 17, 393-408.	1.2	57

#	Article	IF	CITATIONS
19	UPIOM: A New Tool of MFA and Its Application to the Flow of Iron and Steel Associated with Car Production. Environmental Science & Technology, 2011, 45, 1114-1120.	4.6	52
20	Optimal Recycling of Steel Scrap and Alloying Elements: Input-Output based Linear Programming Method with Its Application to End-of-Life Vehicles in Japan. Environmental Science & Technology, 2017, 51, 13086-13094.	4.6	43
21	Finding environmentally important industry clusters: Multiway cut approach using nonnegative matrix factorization. Social Networks, 2013, 35, 423-438.	1.3	41
22	Hybrid LCC of Appliances with Different Energy Efficiency (10 pp). International Journal of Life Cycle Assessment, 2006, 11, 305-314.	2.2	39
23	Quantifying the carbon footprint reduction potential of lifestyle choices in Japan. Environmental Research Letters, 2021, 16, 064022.	2.2	37
24	Decomposition analysis of food waste management with explicit consideration of priority of alternative management options and its application to the Japanese food industry from 2008 to 2015. Journal of Cleaner Production, 2018, 188, 568-574.	4.6	36
25	Affluent countries inflict inequitable mortality and economic loss on Asia via PM2.5 emissions. Environment International, 2020, 134, 105238.	4.8	36
26	Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nature Communications, 2021, 12, 6286.	5.8	36
27	Capital in the American carbon, energy, and material footprint. Journal of Industrial Ecology, 2020, 24, 589-600.	2.8	35
28	Meat Consumption Does Not Explain Differences in Household Food Carbon Footprints in Japan. One Earth, 2019, 1, 464-471.	3.6	34
29	Application of Markov Chain Model to Calculate the Average Number of Times of Use of a Material in Society. An Allocation Methodology for Open-Loop Recycling. Part 1: Methodology Development (7 pp). International Journal of Life Cycle Assessment, 2006, 11, 354-360.	2.2	33
30	Toward an integrated model of the circular economy: Dynamic waste input–output. Resources, Conservation and Recycling, 2018, 139, 326-332.	5.3	32
31	Characterization of Economic Requirements for a "Carbon-Debt-Free Country― Environmental Science & Technology, 2012, 46, 155-163.	4.6	29
32	Identifying environmentally important supply chain clusters in the automobile industry. Economic Systems Research, 2013, 25, 265-286.	1.2	27
33	Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis. Journal of Economic Structures, 2015, 4, .	0.6	26
34	The role of primary processing in the supply risks of critical metals. Economic Systems Research, 2017, 29, 335-356.	1.2	23
35	Identifying the Substance Flow of Metals Embedded in Japanese International Trade by Use of Waste Input-Output Material Flow Analysis (WIO-MFA) Model. ISIJ International, 2011, 51, 1934-1939.	0.6	21
36	Nexus between economy-wide metal inputs and the deterioration of sustainable development goals. Resources, Conservation and Recycling, 2019, 149, 12-19.	5.3	19

#	Article	IF	CITATIONS
37	Economic and social determinants of global physical flows of critical metals. Resources Policy, 2017, 52, 107-113.	4.2	18
38	Forecasting Replacement Demand of Durable Goods and the Induced Secondary Material Flows: A Case Study of Automobiles. Journal of Industrial Ecology, 2015, 19, 10-19.	2.8	17
39	An Hedonic Analysis of the Rental Office Market in the Tokyo Central Business District: 1985-1994 Fiscal Years. Japanese Economic Review, 2000, 51, 130-154.	0.8	14
40	Triangulation of Input–Output Tables Based on Mixed Integer Programs for Inter-temporal and Inter-regional Comparison of Production Structures. Journal of Economic Structures, 2014, 3, .	0.6	10
41	Dynamic material flow analysis of nickel and chromium associated with steel materials by using matrace. Materiaux Et Techniques, 2016, 104, 610.	0.3	9
42	An analysis of consumers' behavior by the waste input-output model: Environmental impact of income and time use. Journal of Life Cycle Assessment Japan, 2006, 2, 48-55.	0.0	8
43	Simultaneously tracing the fate of seven metals at a global level with MaTraceâ€multi. Journal of Industrial Ecology, 2022, 26, 923-936.	2.8	7
44	The anatomy of capital stock : input-output material flow analysis (MFA) of the material composition of physical stocks and its evolution over time. Revue De Metallurgie, 2012, 109, 293-298.	0.3	5
45	Corner: J LCA Jpn (the Journal of Life Cycle Assessment, Japan). International Journal of Life Cycle Assessment, 2007, 12, 547-549.	2.2	4
46	Waste input-output analysis of disposal, recycling, and extended life of electric home appliances. , 0, , .		3
47	Estimation of 2011 Waste Input-Output Table for Japan. Journal of Life Cycle Assessment Japan, 2019, 15, 33-41.	0.0	3
48	Factor X (eco-efficiency) assessment on global warming for one household in Japan. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2010, 89, 1070-1087.	0.2	3
49	Hedonic price index estimation under meanâ€independence of time dummies from quality characteristics. Econometrics Journal, 2003, 6, 28-45.	1.2	2
50	Waste Input-Output Analysis and Optimization of Waste Management. IEEJ Transactions on Electronics, Information and Systems, 2004, 124, 2187-2194.	0.1	2
51	IO-MFA and Thermodynamic Approach for Metal Recycling. , 2013, , 412-413.		2
52	EcoBalance 2014: creating benefit through life cycle thinking. International Journal of Life Cycle Assessment, 2014, 19, 1172-1172.	2.2	2
53	An Integrated Model for Evaluating Environmental Impact of Consumer's Behavior: Consumption †Technologies' and the Waste Input-Output Model. , 2007, , 413-416		2
54	Corner: J LCA Jpn (The Journal of Life Cycle Assessment, Japan). International Journal of Life Cycle Assessment, 2007, 12, 348-350.	2.2	1

#	Article	IF	CITATIONS
55	The collaboration between Int J Life Cycle Assess and J LCA Jpn. International Journal of Life Cycle Assessment, 2008, 13, 605-608.	2.2	1
56	Further Extension of Environmentally Extended Input-Output Analysis. Journal of Industrial Ecology, 2011, 15, 671-673.	2.8	1
57	Using Waste Input-Output Model to Analyze the Environmental Impacts of Dietary Habits. Journal of the Japan Society of Material Cycles and Waste Management, 2009, 20, 119-132.	0.1	1
58	Corner: J LCA Jpn (the Journal of Life Cycle Assessment, Japan). International Journal of Life Cycle Assessment, 2007, 12, 547-549.	2.2	1
59	Inter-regional Waste Input-Output Linear Programming Model and Its Application to the Japanese Regions. , 0, , .		0
60	Consumers' Behavior and Environmental Impact of Time Use: An analysis by the waste input-output model and a consumer model. , 0, , .		0
61	Corner: J LCA Jpn (The Journal of Life Cycle Assessment, Japan). International Journal of Life Cycle Assessment, 2008, 13, 10-11.	2.2	Ο
62	Corner: J LCA Jpn (The Journal of Life Cycle Assessment, Japan). International Journal of Life Cycle Assessment, 2008, 13, 168-171.	2.2	0
63	Waste Input-Output Material Flow Analysis Model. Material Cycles and Waste Management Research, 2009, 20, 206-211.	0.0	0
64	The collaboration between Int J Life Cycle Assess and J LCA Jpn. International Journal of Life Cycle Assessment, 2009, 14, 83-88.	2.2	0
65	The collaboration between Int J Life Cycle Assess and J LCA Jpn. International Journal of Life Cycle Assessment, 2009, 14, 278-281.	2.2	0
66	The collaboration between Int J Life Cycle Assess and J LCA Jpn. International Journal of Life Cycle Assessment, 2009, 14, 571-576.	2.2	0
67	The collaboration between Int J Life Cycle Assess and J LCA Jpn. International Journal of Life Cycle Assessment, 2010, 15, 521-523.	2.2	0
68	The collaboration between Int J Life Cycle Assess and J LCA Jpn. International Journal of Life Cycle Assessment, 2010, 15, 737-744.	2.2	0
69	The collaboration between Int J Life Cycle Assess and J LCA Jpn. International Journal of Life Cycle Assessment, 2010, 15, 533-536.	2.2	0
70	Introduction: Special issue on "Application of Input-Output Tables to LCA― Journal of Life Cycle Assessment Japan, 2006, 2, 2-2.	0.0	0
71	Theories and Methodologies for Supporting Life Cycle Assessment—Part 13. Journal of Life Cycle Assessment Japan, 2010, 6, 54-63.	0.0	0
72	Impacts of Final Consumptions in Tokyo on Productions and Environmental Loads in Other Regions: An Interregional Waste Input-Output Approach. Journal of Life Cycle Assessment Japan, 2012, 8, 26-36.	0.0	0

#	Article	IF	CITATIONS
73	IO-MFA and Thermodynamic Approach for Metal Recycling. , 2013, , 412-413.		0
74	Database Development of Embodied Global-environmental-burden Intensities for Japanese Products with GLIO. Journal of Life Cycle Assessment Japan, 2013, 9, 101-107.	0.0	0
75	Corner: J LCA Jpn (The Journal of Life Cycle Assessment, Japan). International Journal of Life Cycle Assessment, 2007, 12, 348-350.	2.2	0