Suzanne Jackowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676497/publications.pdf

Version: 2024-02-01

20817 38395 10,078 140 60 95 citations h-index g-index papers 142 142 142 9449 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Proton magnetic resonance spectroscopy detects cerebral metabolic derangement in a mouse model of brain coenzyme a deficiency. Journal of Translational Medicine, 2022, 20, 103.	4.4	3
2	Rational Design of Novel Therapies for Pantothenate <scp>Kinase–Associated</scp> Neurodegeneration. Movement Disorders, 2021, 36, 2005-2016.	3.9	12
3	Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature, 2021, 595, 724-729.	27.8	62
4	Cardiac PANK1 deletion exacerbates ventricular dysfunction during pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H784-H797.	3.2	6
5	Pantothenate kinase activation relieves coenzyme A sequestration and improves mitochondrial function in mice with propionic acidemia. Science Translational Medicine, 2021, 13, eabf5965.	12.4	12
6	LipE guided discovery of isopropylphenyl pyridazines as pantothenate kinase modulators. Bioorganic and Medicinal Chemistry, 2021, 52, 116504.	3.0	3
7	A pantothenate kinase-deficient mouse model reveals a gene expression program associated with brain coenzyme a reduction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165663.	3.8	25
8	Quantification of Coenzyme A in Cells and Tissues. Journal of Visualized Experiments, 2019, , .	0.3	7
9	Antimalarial pantothenamide metabolites target acetyl–coenzyme A biosynthesis in <i>Plasmodium falciparum</i> . Science Translational Medicine, 2019, 11, .	12.4	59
10	Proposed Therapies for Pantothenate-Kinase-Associated Neurodegeneration. Journal of Experimental Neuroscience, 2019, 13, 117906951985111.	2.3	11
11	Human pantothenate kinase 4 is a pseudoâ€pantothenate kinase. Protein Science, 2019, 28, 1031-1047.	7.6	29
12	A therapeutic approach to pantothenate kinase associated neurodegeneration. Nature Communications, 2018, 9, 4399.	12.8	65
13	Excess coenzyme A reduces skeletal muscle performance and strength in mice overexpressing human PANK2. Molecular Genetics and Metabolism, 2017, 120, 350-362.	1.1	12
14	T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions. Journal of Biological Chemistry, 2017, 292, 15-30.	3.4	52
15	Allosteric Regulation of Mammalian Pantothenate Kinase. Journal of Biological Chemistry, 2016, 291, 22302-22314.	3.4	29
16	Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice. PLoS ONE, 2015, 10, e0130013.	2.5	35
17	Correction of a genetic deficiency in pantothenate kinase 1 using phosphopantothenate replacement therapy. Molecular Genetics and Metabolism, 2015, 116 , 281 - 288 .	1.1	28
18	A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases. Journal of Medicinal Chemistry, 2015, 58, 1563-1568.	6.4	28

#	Article	IF	CITATIONS
19	The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity. Cell Metabolism, 2015, 21, 718-730.	16.2	83
20	Coenzyme A and its derivatives: renaissance of a textbook classic. Biochemical Society Transactions, 2014, 42, 1025-1032.	3.4	56
21	Deregulated coenzyme A, loss of metabolic flexibility and diabetes. Biochemical Society Transactions, 2014, 42, 1118-1122.	3.4	28
22	Pank1 deletion in leptin-deficient mice reduces hyperglycaemia and hyperinsulinaemia and modifies global metabolism without affecting insulin resistance. Diabetologia, 2014, 57, 1466-1475.	6.3	29
23	Physiological roles of the pantothenate kinases. Biochemical Society Transactions, 2014, 42, 1033-1036.	3.4	65
24	Phosphatidylcholine and the CDP–choline cycle. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 523-532.	2.4	191
25	Phospholipids and phospholipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 469-470.	2.4	4
26	UPR-Mediated Membrane Biogenesis in B Cells. Biochemistry Research International, 2012, 2012, 1-7.	3.3	22
27	Cancer-associated Isocitrate Dehydrogenase Mutations Inactivate NADPH-dependent Reductive Carboxylation. Journal of Biological Chemistry, 2012, 287, 14615-14620.	3.4	140
28	The specialized unfolded protein response of B lymphocytes: ATF6α-independent development of antibody-secreting B cells. Molecular Immunology, 2012, 51, 347-355.	2.2	51
29	Germline Deletion of Pantothenate Kinases 1 and 2 Reveals the Key Roles for CoA in Postnatal Metabolism. PLoS ONE, 2012, 7, e40871.	2.5	66
30	Compartmentalization of Mammalian Pantothenate Kinases. PLoS ONE, 2012, 7, e49509.	2.5	59
31	Lipogenesis by reductive carboxylation is regulated by Bcrâ€Abl signaling. FASEB Journal, 2012, 26, 786.1.	0.5	0
32	The unfolded protein response transducer IRE1 \hat{l} ± prevents ER stress-induced hepatic steatosis. EMBO Journal, 2011, 30, 1357-1375.	7.8	302
33	Impaired Coenzyme A metabolism affects histone and tubulin acetylation in <i>Drosophila</i> and human cell models of pantothenate kinase associated neurodegeneration. EMBO Molecular Medicine, 2011, 3, 755-766.	6.9	71
34	Modulation of Pantothenate Kinase 3 Activity by Small Molecules that Interact with the Substrate/Allosteric Regulatory Domain. Chemistry and Biology, 2010, 17, 892-902.	6.0	47
35	Pantothenate Kinase 1 Is Required to Support the Metabolic Transition from the Fed to the Fasted State. PLoS ONE, 2010, 5, e11107.	2.5	82
36	Pantothenate Kinase from the Thermoacidophilic Archaeon <i>Picrophilus torridus</i> Journal of Bacteriology, 2010, 192, 233-241.	2.2	24

#	Article	IF	CITATIONS
37	Phosphatidylcholine Biosynthesis during Neuronal Differentiation and Its Role in Cell Fate Determination. Journal of Biological Chemistry, 2010, 285, 25382-25393.	3.4	63
38	CTP:Phosphocholine Cytidylyltransferase \hat{l}_{\pm} Is Required for B-cell Proliferation and Class Switch Recombination. Journal of Biological Chemistry, 2009, 284, 6847-6854.	3.4	18
39	Elimination of the CDP-ethanolamine Pathway Disrupts Hepatic Lipid Homeostasis. Journal of Biological Chemistry, 2009, 284, 27077-27089.	3.4	91
40	ATF6 $\hat{l}\pm$ induces XBP1-independent expansion of the endoplasmic reticulum. Journal of Cell Science, 2009, 122, 1626-1636.	2.0	221
41	Disruption of the CDP-ethanolamine pathway of phosphatidylethanolamine synthesis activates the transcription of lipogenic genes leading to hepatic steatosis. Chemistry and Physics of Lipids, 2009, 160, S12.	3.2	0
42	Membrane phospholipid synthesis and endoplasmic reticulum function. Journal of Lipid Research, 2009, 50, S311-S316.	4.2	343
43	Pank1 plays an important role in coenzyme A homeostasis during fasting. FASEB Journal, 2009, 23, 520.2.	0.5	0
44	Cytokine secretion requires phosphatidylcholine synthesis. Journal of Cell Biology, 2008, 181, 945-957.	5.2	60
45	Lipid biosynthesis and the unfolded protein response. FASEB Journal, 2008, 22, 1034.3.	0.5	0
46	The Importance of Being CoA: Generation of a Pank1 Knockout Mouse with Reduced CoA Levels. FASEB Journal, 2008, 22, 643.8.	0.5	0
47	Membrane Lipid Biogenesis in Bâ€Lymphocytes. FASEB Journal, 2008, 22, 251.1.	0.5	0
48	Membrane biogenesis induced by the unfolded protein response. FASEB Journal, 2008, 22, 410.2.	0.5	2
49	Role of CCTα in Bâ€lymphocyte Development from Hematopoietic Stem Cell to Plasma Cell. FASEB Journal, 2008, 22, 643.9.	0.5	0
50	Cytokine secretion requires phosphatidylcholine synthesis. Journal of Experimental Medicine, 2008, 205, i17-i17.	8.5	0
51	Role of Phosphocholine Cytidylyltransferase α in Lung Development. Molecular and Cellular Biology, 2007, 27, 975-982.	2.3	50
52	Coordinate Regulation of Phospholipid Biosynthesis and Secretory Pathway Gene Expression in XBP-1(S)-induced Endoplasmic Reticulum Biogenesis*. Journal of Biological Chemistry, 2007, 282, 7024-7034.	3.4	214
53	Crystal Structures of Human Pantothenate Kinases. Journal of Biological Chemistry, 2007, 282, 27984-27993.	3.4	77
54	Phospholipid Biosynthesis Program Underlying Membrane Expansion during B-lymphocyte Differentiation. Journal of Biological Chemistry, 2007, 282, 7591-7605.	3.4	82

#	Article	IF	Citations
55	Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1494-1499.	7.1	75
56	Biosynthesis of Pantothenic Acid and Coenzyme A. EcoSal Plus, 2007, 2, .	5.4	196
57	Using membrane stress to our advantage. Biochemical Society Transactions, 2007, 35, 498-501.	3.4	16
58	Probucol therapy overcomes the reproductive defect in CTP: phosphocholine cytidylyltransferase \hat{l}^2 2 knockout mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 845-852.	2.4	9
59	Localization and regulation of mouse pantothenate kinase 2. FEBS Letters, 2007, 581, 4639-4644.	2.8	59
60	Structure of the Type III Pantothenate Kinase fromBacillus anthracisat 2.0 à Resolution: Implications for Coenzyme A-Dependent Redox Biologyâ€,‡. Biochemistry, 2007, 46, 3234-3245.	2.5	50
61	Chemical Knockout of Pantothenate Kinase Reveals the Metabolic and Genetic Program Responsible for Hepatic Coenzyme A Homeostasis. Chemistry and Biology, 2007, 14, 291-302.	6.0	105
62	Golgi-mediated secretion requires de novo phospholipid synthesis. Chemistry and Physics of Lipids, 2007, 149, S21.	3.2	0
63	Role of CCTα in Macrophage Secretion. FASEB Journal, 2007, 21, A603.	0.5	O
64	Structure–activity relationships and enzyme inhibition of pantothenamide-type pantothenate kinase inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 1007-1020.	3.0	61
65	Prokaryotic Type II and Type III Pantothenate Kinases: The Same Monomer Fold Creates DimersÂwith Distinct Catalytic Properties. Structure, 2006, 14, 1251-1261.	3.3	51
66	Placental Thrombosis and Spontaneous Fetal Death in Mice Deficient in Ethanolamine Kinase 2. Journal of Biological Chemistry, 2006, 281, 28438-28449.	3.4	49
67	Biochemical Properties of Human Pantothenate Kinase 2 Isoforms and Mutations Linked to Pantothenate Kinase-associated Neurodegeneration. Journal of Biological Chemistry, 2006, 281, 107-114.	3.4	76
68	Membrane Biogenesis in Bâ€lymphocytes. FASEB Journal, 2006, 20, A947.	0.5	0
69	XBP1(S) and the mechanism of phospholipid biosynthesis. FASEB Journal, 2006, 20, A952.	0.5	O
70	A Pantothenate Kinase from Staphylococcus aureus Refractory to Feedback Regulation by Coenzyme A. Journal of Biological Chemistry, 2005, 280, 3314-3322.	3.4	85
71	CTP:Phosphocholine Cytidylyltransferase: Paving the Way from Gene to Membrane. Journal of Biological Chemistry, 2005, 280, 853-856.	3.4	89
72	Early Embryonic Lethality in Mice with Targeted Deletion of the CTP:Phosphocholine Cytidylyltransferase α Gene (Pcyt1a). Molecular and Cellular Biology, 2005, 25, 3357-3363.	2.3	99

#	Article	IF	CITATIONS
73	Feedback Regulation of Murine Pantothenate Kinase 3 by Coenzyme A and Coenzyme A Thioesters. Journal of Biological Chemistry, 2005, 280, 32594-32601.	3.4	74
74	Coenzyme A: Back in action. Progress in Lipid Research, 2005, 44, 125-153.	11.6	488
75	PPARα controls the intracellular coenzyme A concentration via regulation of PANK1α gene expression. Journal of Lipid Research, 2004, 45, 17-31.	4.2	48
76	Acyl Carrier Protein Is a Cellular Target for the Antibacterial Action of the Pantothenamide Class of Pantothenate Antimetabolites. Journal of Biological Chemistry, 2004, 279, 50969-50975.	3.4	76
77	Disruption of CCTÎ ² 2 Expression Leads to Gonadal Dysfunction. Molecular and Cellular Biology, 2004, 24, 4720-4733.	2.3	48
78	The Structure of the Pantothenate Kinase·ADP·Pantothenate Ternary Complex Reveals the Relationship between the Binding Sites for Substrate, Allosteric Regulator, and Antimetabolites. Journal of Biological Chemistry, 2004, 279, 35622-35629.	3.4	47
79	Bacterial Inhibition of Phosphatidylcholine Synthesis Triggers Apoptosis in the Brain. Journal of Experimental Medicine, 2004, 200, 99-106.	8.5	31
80	XBP1. Journal of Cell Biology, 2004, 167, 35-41.	5.2	567
81	Gene structure, expression and identification of a new CTP:phosphocholine cytidylyltransferase \hat{l}^2 isoform. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1633, 1-12.	2.4	82
82	Prevalence of Necrosis in C2-Ceramide–Induced Cytotoxicity in NB16 Neuroblastoma Cells. Molecular Pharmacology, 2003, 64, 502-511.	2.3	31
83	Role of Feedback Regulation of Pantothenate Kinase (CoaA) in Control of Coenzyme A Levels in Escherichia coli. Journal of Bacteriology, 2003, 185, 3410-3415.	2.2	75
84	Chapter 3 Fatty acid and phospholipid metabolism in prokaryotes. New Comprehensive Biochemistry, 2002, 36, 55-92.	0.1	27
85	Structure and Mechanism of CTP:Phosphocholine Cytidylyltransferase (LicC) from Streptococcus pneumoniae. Journal of Biological Chemistry, 2002, 277, 4343-4350.	3.4	42
86	A Missense Mutation in the fabB (\hat{l}^2 -Ketoacyl-Acyl Carrier Protein Synthase I) Gene Confers Thiolactomycin Resistance to Escherichia coli. Antimicrobial Agents and Chemotherapy, 2002, 46, 1246-1252.	3.2	33
87	Inhibition of CTP:Phosphocholine Cytidylyltransferase by C2-Ceramide and Its Relationship to Apoptosis. Molecular Pharmacology, 2002, 62, 1068-1075.	2.3	33
88	Forty Years of Bacterial Fatty Acid Synthesis. Biochemical and Biophysical Research Communications, 2002, 292, 1155-1166.	2.1	191
89	The murine pantothenate kinase (Pank1) gene encodes two differentially regulated pantothenate kinase isozymes. Gene, 2002, 291, 35-43.	2.2	71
90	Role of Calcium-Independent Phospholipases (iPLA2) in Phosphatidylcholine Metabolism. Biochemical and Biophysical Research Communications, 2001, 287, 600-606.	2.1	26

#	Article	IF	CITATIONS
91	Lipid Activation of CTP:Phosphocholine Cytidylyltransferase α: Characterization and Identification of a Second Activation Domainâ€. Biochemistry, 2001, 40, 494-503.	2.5	46
92	Overexpression of a Mammalian Ethanolamine-specific Kinase Accelerates the CDP-ethanolamine Pathway. Journal of Biological Chemistry, 2001, 276, 2174-2179.	3.4	87
93	The licC Gene of Streptococcus pneumoniae Encodes a CTP:Phosphocholine Cytidylyltransferase. Journal of Bacteriology, 2001, 183, 4927-4931.	2.2	29
94	Regulation of mammalian cell membrane biosynthesis. Progress in Molecular Biology and Translational Science, 2000, 65, 361-393.	1.9	98
95	Macrophages Deficient in CTP:Phosphocholine Cytidylyltransferase-α Are Viable under Normal Culture Conditions but Are Highly Susceptible to Free Cholesterol-induced Death. Journal of Biological Chemistry, 2000, 275, 35368-35376.	3.4	59
96	Structural Basis for the Feedback Regulation of Escherichia coli Pantothenate Kinase by Coenzyme A. Journal of Biological Chemistry, 2000, 275, 28093-28099.	3.4	98
97	Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9032-9036.	7.1	247
98	Pantothenate Kinase Regulation of the Intracellular Concentration of Coenzyme A. Journal of Biological Chemistry, 2000, 275, 1377-1383.	3.4	173
99	Tumor Necrosis Factor-α Inhibits Expression of CTP:Phosphocholine Cytidylyltransferase. Journal of Biological Chemistry, 2000, 275, 9699-9708.	3.4	75
100	Activity of the phosphatidylcholine biosynthetic pathway modulates the distribution of fatty acids into glycerolipids in proliferating cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1483, 301-315.	2.4	83
101	Cloning and Characterization of a Eukaryotic Pantothenate Kinase Gene (panK) from Aspergillus nidulans. Journal of Biological Chemistry, 1999, 274, 2014-2020.	3.4	82
102	Cellular Responses to Excess Phospholipid. Journal of Biological Chemistry, 1999, 274, 9400-9408.	3.4	173
103	Distribution of CTP:Phosphocholine Cytidylyltransferase (CCT) Isoforms. Journal of Biological Chemistry, 1999, 274, 26992-27001.	3.4	137
104	The antiproliferative effect of hexadecylphosphocholine toward HL60 cells is prevented by exogenous lysophosphatidylcholine. Lipids and Lipid Metabolism, 1998, 1389, 1-12.	2.6	51
105	Apoptosis Triggered by 1-O-Octadecyl-2-O-methyl-rac-glycero-3-phosphocholine Is Prevented by Increased Expression of CTP:Phosphocholine Cytidylyltransferase. Journal of Biological Chemistry, 1998, 273, 2169-2173.	3.4	97
106	Cloning and Characterization of a Second Human CTP:Phosphocholine Cytidylyltransferase. Journal of Biological Chemistry, 1998, 273, 14022-14029.	3.4	115
107	Modulation of CTP:phosphocholine cytidylyltransferase by membrane torque tension. Biochemical Society Transactions, 1998, 26, S230-S230.	3.4	13
108	The Role of CDP-Diacylglycerol Synthetase and Phosphatidylinositol Synthase Activity Levels in the Regulation of Cellular Phosphatidylinositol Content. Journal of Biological Chemistry, 1997, 272, 33402-33409.	3.4	114

#	Article	IF	Citations
109	Phosphatidylcholine signaling in response to CSF-1. Molecular Reproduction and Development, 1997, 46, 24-30.	2.0	12
110	Increased unsaturated fatty acid production associated with a suppressor of the fabA6(Ts) mutation in Escherichia coli. Journal of Bacteriology, 1996, 178, 5382-5387.	2.2	19
111	Cell Cycle Regulation of Membrane Phospholipid Metabolism. Journal of Biological Chemistry, 1996, 271, 20219-20222.	3.4	181
112	Lipid metabolism in prokaryotes. New Comprehensive Biochemistry, 1996, 31, 35-74.	0.1	35
113	The Association of Lipid Activators with the Amphipathic Helical Domain of CTP:Phosphocholine Cytidylyltransferase Accelerates Catalysis by Increasing the Affinity of the Enzyme for CTP. Journal of Biological Chemistry, 1995, 270, 23951-23957.	3.4	58
114	Lysophosphatidylcholine and 1-O-Octadecyl-2-O-Methyl-rac- Glycero-3-Phosphocholine Inhibit the CDP-Choline Pathway of Phosphatidylcholine Synthesis at the CTP:Phosphocholine Cytidylyltransferase Step. Journal of Biological Chemistry, 1995, 270, 7757-7764.	3.4	141
115	Lipid Activation of CTP:Phosphocholine Cytidylyltransferase Is Regulated by the Phosphorylated Carboxyl-terminal Domain. Journal of Biological Chemistry, 1995, 270, 16503-16506.	3.4	62
116	Lysophosphatidylcholine Attenuates the Cytotoxic Effects of the Antineoplastic Phospholipid 1-O-Octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Journal of Biological Chemistry, 1995, 270, 11612-11618.	3.4	85
117	Cloning of a Novel Phosphoprotein Regulated by Colony-stimulating Factor 1 Shares a Domain with the Drosophiladisabled Gene Product. Journal of Biological Chemistry, 1995, 270, 14184-14191.	3.4	138
118	Expression of Rat CTP:Phosphocholine Cytidylyltransferase in Insect Cells Using a Baculovirus Vector. Archives of Biochemistry and Biophysics, 1993, 301, 114-118.	3.0	29
119	The gene for murine CTP: Phosphocholine cytidylyltransferase (Ctpct) is located on mouse chromosome 16. Genomics, 1993, 18, 698-701.	2.9	27
120	Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. Journal of Bacteriology, 1993, 175, 3723-3729.	2.2	89
121	[13] 2-Acylglycerophosphoethanolamine acyltransferase/ acyl-[acyl-carrier-protein] synthetase from Escherichia coli. Methods in Enzymology, 1992, 209, 111-117.	1.0	10
122	Cloning, sequencing, and expression of the pantothenate kinase (coaA) gene of Escherichia coli. Journal of Bacteriology, 1992, 174, 6411-6417.	2.2	82
123	coaA and rts are allelic and located at kilobase 3532 on the Escherichia coli physical map. Journal of Bacteriology, 1992, 174, 1705-1706.	2.2	19
124	Overproduction of beta-ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. Journal of Bacteriology, 1992, 174, 508-513.	2.2	97
125	Chapter 2 Lipid metabolism in procrayotes. New Comprehensive Biochemistry, 1991, 20, 43-85.	0.1	2
126	Cloning, sequence, and expression of the pantothenate permease (panF) gene of Escherichia coli. Journal of Bacteriology, 1990, 172, 3842-3848.	2.2	91

#	Article	IF	CITATIONS
127	Uptake and acylation of 2-acyl-lysophospholipids by Escherichia coli. Journal of Bacteriology, 1989, 171, 1203-1205.	2.2	26
128	Stimulation of phosphatidylinositol 4,5-bisphosphate phospholipase C activity by phosphatidic acid. Archives of Biochemistry and Biophysics, 1989, 268, 516-524.	3.0	91
129	Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli. Journal of Bacteriology, 1988, 170, 3961-3966.	2.2	58
130	Altered molecular form of acyl carrier protein associated with beta-ketoacyl-acyl carrier protein synthase II (fabF) mutants. Journal of Bacteriology, 1987, 169, 1469-1473.	2.2	47
131	Fatty acid metabolism in sn-glycerol-3-phosphate acyltransferase (plsB) mutants. Journal of Bacteriology, 1987, 169, 605-611.	2.2	18
132	Transformation by the v-fms oncogene product: An analog of the CSF-1 receptor. Journal of Cellular Biochemistry, 1987, 33, 109-115.	2.6	6
133	Consequences of reduced intracellular coenzyme A content in Escherichia coli. Journal of Bacteriology, 1986, 166, 866-871.	2.2	79
134	Metabolism of 4'-phosphopantetheine in Escherichia coli. Journal of Bacteriology, 1984, 158, 115-120.	2.2	92
135	Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium. Journal of Bacteriology, 1982, 149, 916-922.	2.2	101
136	Regulation of coenzyme A biosynthesis. Journal of Bacteriology, 1981, 148, 926-932.	2.2	236
137	Glycerol permeabilities of fertilized and unfertilized mouse ova. The Journal of Experimental Zoology, 1980, 212, 329-341.	1.4	150
138	Surface Alterations of the Mouse Zona Pellucida and Ovum following in vivo Fertilization: Correlation with the Cell Cycle. Biology of Reproduction, 1979, 20, 150-161.	2.7	44
139	A Ca2+-stimulated ATPase activity in rabbit neutrophil membranes. Biochimica Et Biophysica Acta - Biomembranes, 1979, 558, 348-352.	2.6	23
140	Factors affecting survival of mouse embryos during freezing and thawing. Experimental Cell Research, 1974, 89, 79-88.	2.6	120