
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infrared spectroscopy and theoretical structure analyses of protonated fluoroalcohol clusters: the impact of fluorination on the hydrogen bond networks. Physical Chemistry Chemical Physics, 2022, 24, 12631-12644.	1.3	1
2	Strong Fermi Resonance Associated with Proton Motions Revealed by Vibrational Spectra of Asymmetric Protonâ€Bound Dimers. Angewandte Chemie - International Edition, 2021, 60, 1936-1941.	7.2	14
3	Strong Fermi Resonance Associated with Proton Motions Revealed by Vibrational Spectra of Asymmetric Protonâ€Bound Dimers. Angewandte Chemie, 2021, 133, 1964-1969.	1.6	0
4	Anharmonic Coupling Revealed by the Vibrational Spectra of Solvated Protonated Methanol: Fermi Resonance, Combination Bands, and Isotope Effect. Journal of Physical Chemistry A, 2021, 125, 1910-1918.	1.1	5
5	Cooperativity of the Activated CH/ĩ€ Interaction Probed through CH Stretching Vibrations in Phenol–(Acetylene)n (âୀ416 â‰ृष â‰ୟୀ430) and (Acetylene)n+ (10 â‰ष â‰ସ⁄0) Clusters. Journal of Physic Chemistry A, 2021, 125, 3885-3891.	cal 1	0
6	Infrared Spectroscopy and Anharmonic Vibrational Analysis of (H2O–Krn)+ (n = 1–3): Hemibond Formation of the Water Radical Cation. Journal of Physical Chemistry Letters, 2021, 12, 7997-8002.	2.1	6
7	Understanding Fermi resonances in the complex vibrational spectra of the methyl groups in methylamines. Physical Chemistry Chemical Physics, 2021, 23, 3739-3747.	1.3	13
8	How many methanol molecules effectively solvate an excess proton in the gas phase? Infrared spectroscopy of H ⁺ (methanol) _{<i>n</i>} –benzene clusters. Physical Chemistry Chemical Physics, 2021, 24, 163-171.	1.3	3
9	Vibrational Coupling in Solvated H ₃ O ⁺ : Interplay between Fermi Resonance and Combination Band. Journal of Physical Chemistry Letters, 2020, 11, 10067-10072.	2.1	8
10	Infrared spectroscopic observation of the McLafferty rearrangement in ionized 2-pentanone. Physical Chemistry Chemical Physics, 2020, 22, 19230-19237.	1.3	2
11	Vibrational spectroscopy of protonated amine–water clusters: tuning Fermi resonance and lighting up dark states. Physical Chemistry Chemical Physics, 2020, 22, 22035-22046.	1.3	13
12	Effects of mixing between short-chain and branched-chain alcohols in protonated clusters. Physical Chemistry Chemical Physics, 2020, 22, 13223-13239.	1.3	9
13	Migrations and Catalytic Action of Water Molecules in the Ionized Formamide–(H2O)2Cluster. Journal of Physical Chemistry A, 2020, 124, 2802-2807.	1.1	0
14	Hydrogen Bond Networks Formed by Several Dozens to Hundreds of Molecules in the Gas Phase. , 2019, , 89-111.		0
15	Effects of solvent molecules on hemi-bonded (CH3SH)2+: infrared absorption of [(CH3SH)2–X]+ with X = H2O, (CH3)2CO, or NH3 and (CH3SH)n+ (n = 3–6). Physical Chemistry Chemical Physics, 2019, 21, 16055-16063.	1.3	11
16	Electronic and Infrared Spectroscopy of Benzene-(H2S)n (n = 1 and 2): The Prototype of the SH-Ï€ Interaction. Journal of Physical Chemistry A, 2019, 123, 7255-7260.	1.1	5
17	Influence of the microsolvation on hemibonded and protonated hydrogen sulfide: infrared spectroscopy of [(H ₂ S) _n (X) ₁] ⁺ and H ⁺ (H ₂ S) _n (X) ₁ (<i>n</i> = 1 and 2, X = water, methanol,) Tj E	TQq110.	.784314 rgE
18	The Sâ^Ï€ hemibond and its competition with the Sâ^S hemibond in the simplest model system: infrared spectroscopy of the [benzene-(H ₂ S) _n] ⁺ (<i>n</i> = 1–4) radical cation clusters. Chemical Science, 2019, 10, 7260-7268.	3.7	12

Аѕика Ғијіі

#	Article	IF	CITATIONS
19	Infrared Spectroscopic Study on Trimethyl Amine Radical Cation: Correlation between Proton-Donating Ability and Structural Deformation. Journal of Physical Chemistry A, 2019, 123, 5945-5950.	1.1	1
20	IR Spectroscopic Investigation on Isomerization of Ionized Ethylene Glycol. Journal of Physical Chemistry A, 2019, 123, 5122-5128.	1.1	1
21	Hydrogen bond network structures of protonated short-chain alcohol clusters. Physical Chemistry Chemical Physics, 2018, 20, 14971-14991.	1.3	21
22	An integrated experimental and theoretical reaction path search: analyses of the multistage reaction of an ionized diethylether dimer involving isomerization, proton transfer, and dissociation. Physical Chemistry Chemical Physics, 2018, 20, 14331-14338.	1.3	4
23	Competition between hydrogen bonds and van der Waals forces in intermolecular structure formation of protonated branched-chain alcohol clusters. Physical Chemistry Chemical Physics, 2018, 20, 25482-25494.	1.3	9
24	An infrared spectroscopic study on proton transfer from CH bonds in ionized dimers of cyclic ethers. Journal of Chemical Physics, 2018, 148, 094302.	1.2	2
25	Infrared Spectroscopy of Protonated Phenol–Water Clusters. Journal of Physical Chemistry A, 2018, 122, 5822-5831.	1.1	24
26	Fermi resonance in solvated H ₃ O ⁺ : a counter-intuitive trend confirmed <i>via</i> a joint experimental and theoretical investigation. Physical Chemistry Chemical Physics, 2018, 20, 13836-13844.	1.3	25
27	Spectral Characterization of Three-Electron Two-Center (3e–2c) Bonds of Gaseous CH ₃ Sâ^S(H)CH ₃ and (CH ₃ SH) ₂ ⁺ and Enhancement of the 3e–2c Bond upon Protonation. Journal of Physical Chemistry Letters, 2018, 9, 3725-3730.	2.1	19
28	Spectroscopic observation of two-center three-electron bonded (hemi-bonded) structures of (H ₂ S) _n ⁺ clusters in the gas phase. Chemical Science, 2017, 8, 2667-2670.	3.7	27
29	A combined theoretical and experimental study of phenol-(acetylene) <i>n</i> (<i>n</i> â‰ず) clusters. Journal of Chemical Physics, 2017, 146, 154303.	1.2	6
30	Effects of Alkyl Groups on Excess-Electron Binding to Small-Sized Secondary Amide Clusters: A Combined Experimental and Computational Study. Journal of Physical Chemistry A, 2017, 121, 4397-4403.	1.1	0
31	Structures of protonated hydrogen sulfide clusters, H+(H2S)n, highlighting the nature of sulfur-centered intermolecular interactions. Physical Chemistry Chemical Physics, 2017, 19, 2036-2043.	1.3	5
32	Infrared Spectroscopic Study of the Acidic CH Bonds in Hydrated Clusters of Cationic Pentane. Journal of Physical Chemistry Letters, 2017, 8, 4716-4719.	2.1	8
33	Infrared spectroscopic evidence for the initial step of dissociation of the stable benzoic acid cyclic dimer with microsolvation by a single water molecule. Chemical Physics Letters, 2017, 684, 368-372.	1.2	5
34	Temperature and Size Dependence of Characteristic Hydrogen-Bonded Network Structures with Ion Core Switching in Protonated (Methanol) _{6–10} –(Water) ₁ Mixed Clusters: A Revisit. Journal of Physical Chemistry A, 2017, 121, 5399-5413.	1.1	6
35	An ab initio anharmonic approach to study vibrational spectra of small ammonia clusters. Physical Chemistry Chemical Physics, 2016, 18, 30498-30506.	1.3	31
36	Infrared Spectroscopic Investigation of the Acidic CH Bonds in Cationic <i>n</i> -Alkanes: Pentane, Hexane, and Heptane. Journal of Physical Chemistry A, 2016, 120, 6351-6356.	1.1	9

#	Article	IF	CITATIONS
37	Observation of Evidence for the Ï€*â^ïĬƒ* Hyperconjugation in the S ₁ State of <i>o-</i> , <i>m-</i> , and <i>p-</i> Fluorotoluenes by Double-Resonance Infrared Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 5573-5580.	1.1	9
38	Stepwise Internal Energy Change of Protonated Methanol Clusters By Using the Inert Gas Tagging. Journal of Physical Chemistry A, 2016, 120, 9203-9208.	1.1	14
39	An infrared spectroscopic and theoretical study on (CH ₃) ₃ N–H ⁺ –(H ₂ O) _n , n = 1–22: highly polarized hydrogen bond networks of hydrated clusters. Physical Chemistry Chemical Physics, 2015, 17. 25863-25876.	1.3	19
40	Acid–Base Formalism in Dispersion-Stabilized S–H···Y (Yâ•O, S) Hydrogen-Bonding Interactions. Journal of Physical Chemistry A, 2015, 119, 1117-1126.	1.1	25
41	Infrared Spectroscopy of Warm and Neutral Phenol–Water Clusters. Journal of Physical Chemistry A, 2015, 119, 1315-1322.	1.1	17
42	Hydrogen-bonded ring closing and opening of protonated methanol clusters H ⁺ (CH ₃ OH) _n (n = 4–8) with the inert gas tagging. Physical Chemistry Chemical Physics, 2015, 17, 22042-22053.	1.3	23
43	The Large Variation in Acidity of Diethyl Ether Cation Induced by Internal Rotation about a Single Covalent Bond. Journal of Physical Chemistry A, 2015, 119, 4885-4890.	1.1	11
44	Infrared Spectroscopic Investigation of Photoionization-Induced Acidic C–H Bonds in Cyclic Ethers. Journal of Physical Chemistry A, 2015, 119, 5668-5675.	1.1	19
45	Photodetachment Spectroscopy of Fluorenone Radical Anions Microsolvated with Methanol: Rationalizing the Anomalous Solvatochromic Behavior Due to Hydrogen Bonding. Journal of Physical Chemistry A, 2015, 119, 3721-3730.	1.1	2
46	Hyperconjugation in diethyl ether cation versus diethyl sulfide cation. Physical Chemistry Chemical Physics, 2015, 17, 23602-23612.	1.3	3
47	Infrared spectroscopic investigations of cationic ethanol, propanol, and butanol. Chemical Physics Letters, 2015, 640, 215-218.	1.2	7
48	Isomer-selective infrared spectroscopy of the cationic trimethylamine dimer to reveal its charge sharing and enhanced acidity of the methyl groups. Physical Chemistry Chemical Physics, 2014, 16, 9619-9624.	1.3	23
49	Infrared spectroscopy of large-sized neutral and protonated ammonia clusters. Physical Chemistry Chemical Physics, 2014, 16, 7595-7601.	1.3	30
50	Infrared Spectroscopy of Protonated Trimethylamine–(Benzene) _{<i>n</i>} (<i>n</i> = 1–4) as Model Clusters of the Quaternary Ammonium–Aromatic Ring Interaction. Journal of Physical Chemistry A, 2014, 118, 7297-7305.	1.1	5
51	Infrared spectroscopy of large protonated water clusters H+(H2O)20–50 cooled by inert gas attachment. Chemical Physics, 2013, 419, 2-7.	0.9	28
52	Proton location in (CH3)3N-H+-(CH3OH) : A theoretical and infrared spectroscopic study. Chemical Physics, 2013, 421, 1-9.	0.9	15
53	The Intermolecular SHâ‹â‹â‹Y (Y=S,O) Hydrogen Bond in the H ₂ S Dimer and the H ₂ S–MeOH Complex. ChemPhysChem, 2013, 14, 905-914.	1.0	56
54	Folding of the Hydrogen Bond Network of H+(CH3OH)7 with Rare Gas Tagging. Journal of Physical Chemistry A, 2013, 117, 101-107.	1.1	35

#	Article	IF	CITATIONS
55	Structures of hydrogen bond networks formed by a few tens of methanol molecules in the gas phase: size-selective infrared spectroscopy of neutral and protonated methanol clusters. Physical Chemistry Chemical Physics, 2013, 15, 9523.	1.3	31
56	Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters. International Reviews in Physical Chemistry, 2013, 32, 266-307.	0.9	87
57	Characterization of a Solvent-Separated Ion-Radical Pair in Cationized Water Networks: Infrared Photodissociation and Ar-Attachment Experiments for Water Cluster Radical Cations (H ₂ 0) _{<i>n</i>} < ⁺ (<i>n</i> = 3â€"8). Journal of Physical Chemistry A, 2013. 117. 929-938.	1.1	49
58	Experimental and theoretical investigations of isomerization reactions of ionized acetone and its dimer. Physical Chemistry Chemical Physics, 2012, 14, 712-719.	1.3	17
59	Structures and Dissociation Channels of Protonated Mixed Clusters around a Small Magic Number: Infrared Spectroscopy of ((CH ₃) ₃ N) _{<i>n</i>} –H ⁺ –H ₂ O (<i>n</i> =) T	ij <mark>11</mark> Qq1 i	1 0 <mark>.4</mark> 84314 rg
60	Size-Dependent Metamorphosis of Electron Binding Motif in Cluster Anions of Primary Amide Molecules. Journal of Physical Chemistry A, 2012, 116, 3771-3780.	1.1	8
61	Tuning of the Internal Energy and Isomer Distribution in Small Protonated Water Clusters H ⁺ (H ₂ O) _{4–8} : An Application of the Inert Gas Messenger Technique. Journal of Physical Chemistry A, 2012, 116, 4868-4877.	1.1	75
62	Preference of the monodentate contact in the CH/í€ interaction between an alkyl group and a single phenyl ring: Stable structures of benzene–ethane clusters. Chemical Physics Letters, 2012, 537, 11-15.	1.2	6
63	Infrared photodissociation spectroscopy of H+(H2O)6·Mm (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O+ and H5O2+ core isomers. Physical Chemistry Chemical Physics, 2011, 13, 7129.	1.3	107
64	Spectral Signatures of Four-Coordinated Sites in Water Clusters: Infrared Spectroscopy of Phenolâ^'(H ₂ O) _{<i>n</i>} (â^1⁄420 ≤i>n ≤î^1⁄450). Journal of Physical Chemistr 2011, 115, 620-625.	ry 1A,1	50
65	Solvation-Induced Ïf-Complex Structure Formation in the Gas Phase: A Revisit to the Infrared Spectroscopy of [C ₆ H ₆ –(CH ₃ OH) ₂] ⁺ . Journal of Physical Chemistry A, 2011, 115, 11156-11161.	1.1	7
66	Structural Origin of the Antimagic Number in Protonated Water Clusters H ⁺ (H ₂ O) _{<i>n</i>} : Spectroscopic Observation of the "Missing― Water Molecule in the Outermost Hydration Shell. Journal of Physical Chemistry Letters, 2011, 2, 2130-2134.	2.1	28
67	Structural trends of ionized water networks: Infrared spectroscopy of watercluster radical cations (H2O)n+ (n = $3\hat{a}\in$ 11). Chemical Science, 2011, 2, 868-876.	3.7	80
68	Experimental and theoretical determination of the accurate CH/Ï€ interaction energies in benzene–alkane clusters: correlation between interaction energy and polarizability. Physical Chemistry Chemical Physics, 2011, 13, 14131.	1.3	52
69	Catalytic Action of a Single Water Molecule in a Protonâ€Migration Reaction. Angewandte Chemie - International Edition, 2010, 49, 4898-4901.	7.2	27
70	Infrared Spectra and Hydrogenâ€Bonded Network Structures of Large Protonated Water Clusters H ⁺ (H ₂ O) _{<i>n</i>} (<i>n</i> =20 – 200). Angewandte Chemie - International Edition, 2010, 49, 10119-10122.	7.2	93
71	Comprehensive Analysis on the Structure and Proton Switch in H ⁺ (CH ₃ OH) _{<i>m</i>} (H ₂ O) _{<i>n</i>} (<i>m</i> + <i>n</i> = 5 and 6). Journal of Physical Chemistry A, 2010, 114, 3096-3102.	1.1	12
72	Infrared and Electronic Spectroscopy of Benzeneâ^'Ammonia Cluster Radical Cations [C ₆ H ₆ (NH ₃) _{1,2}] ⁺ : Observation of Isolated and Microsolvated σ-Complexes. Journal of Physical Chemistry A, 2010, 114, 11060-11069.	1.1	19

Аѕика Ғијіі

#	Article	IF	CITATIONS
73	Long-Range Migration of a Water Molecule To Catalyze a Tautomerization in Photoionization of the Hydrated Formamide Cluster. Journal of Physical Chemistry A, 2010, 114, 11896-11899.	1.1	21
74	Anticooperative Effect Induced by Mixed Solvation in H ⁺ (CH ₃ OH) _{<i>m</i>} (H ₂ O) _{<i>n</i>} (<i>m</i> + <i>n</i> = 5 and 6): A Theoretical and Infrared Spectroscopic Study. Journal of Physical Chemistry A, 2010, 114, 8170-8177.	1.1	18
75	Intermolecular proton-transfer in acetic acid clusters induced by vacuum-ultraviolet photoionization. Journal of Chemical Physics, 2009, 131, 184304.	1.2	22
76	Infrared spectroscopy for acetone and its dimer based on photoionization detection with tunable coherent vacuum-ultraviolet light. Chemical Physics Letters, 2009, 471, 50-53.	1.2	14
77	Interpreting the Physical Background of Empirical Solvent Polarity via Photodetachment Spectroscopy of Microsolvated Aromatic Ketyl Anions. Journal of Physical Chemistry A, 2009, 113, 10593-10602.	1.1	6
78	Proton Switch Correlated with the Morphological Development of the Hydrogen-Bond Network in H ⁺ (MeOH) _{<i>m</i>} (H ₂ O) ₁ (<i>m</i> = 1â°'9): A Theoretical and Infrared Spectroscopic Study. Journal of Physical Chemistry A, 2009, 113, 2323-2332.	1.1	11
79	Vibrational spectroscopy of size-selected neutral and cationic clusters combined with vacuum-ultraviolet one-photon ionization detection. Physical Chemistry Chemical Physics, 2009, 11, 1279.	1.3	87
80	Infrared Spectroscopy of Phenolâ^'(H ₂ O) _{<i>n</i>>10} : Structural Strains in Hydrogen Bond Networks of Neutral Water Clusters. Journal of Physical Chemistry A, 2009, 113, 12134-12141.	1.1	55
81	Observation of an Isolated Intermediate of the Nucleophilic Aromatic Substition Reaction by Infrared Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 6008-6010.	7.2	20
82	Photoelectron spectroscopy of microsolvated benzophenone radical anions to reveal the origin of solvatochromic shifts in alcoholic media. Chemical Physics Letters, 2008, 457, 18-22.	1.2	9
83	Experimental and theoretical determination of the accurate interaction energies in benzene–halomethane: the unique nature of the activated CH/π interaction of haloalkanes. Physical Chemistry Chemical Physics, 2008, 10, 2836.	1.3	77
84	Nature and physical origin of CH/i€ interaction: significant difference from conventional hydrogen bonds. Physical Chemistry Chemical Physics, 2008, 10, 2584.	1.3	311
85	CH/Ï€ interactions in methane clusters with polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics, 2008, 10, 2860.	1.3	54
86	Infrared predissociation spectroscopy of cluster cations of protic molecules, (NH[sub 3])[sub n]+], n=2–4 and (CH[sub 3]OH)[sub n]+], n=2,3. Journal of Chemical Physics, 2008, 129, 094306.	1.2	34
87	Size-Selected Infrared Predissociation Spectroscopy of Neutral and Cationic Formamideâ^'Water Clusters: Stepwise Growth of Hydrated Structures and Intracluster Hydrogen Transfer Induced by Vacuum-Ultraviolet Photoionization. Journal of Physical Chemistry A, 2008, 112, 6840-6849.	1.1	23
88	Comprehensive Analysis of the Hydrogen Bond Network Morphology and OH Stretching Vibrations in Protonated Methanolâ^'Water Mixed Clusters, H ⁺ (MeOH) ₁ (H ₂ O) _{<i>n</i>} (<i>n</i> = 1â^'8). Journal of Physical Chemistry A, 2008, 112, 10125-10133.	1.1	19
89	Compatibility between methanol and water in the three-dimensional cage formation of large-sized protonated methanol-water mixed clusters. Journal of Chemical Physics, 2007, 126, 194306.	1.2	26
90	Long range influence of an excess proton on the architecture of the hydrogen bond network in large-sized water clusters. Journal of Chemical Physics, 2007, 126, 231101.	1.2	46

#	Article	IF	CITATIONS
91	Comprehensive characterization of the photodissociation pathways of protonated tryptophan. Journal of Chemical Physics, 2007, 127, 134313.	1.2	59
92	Stepwise Solvatochromism of Ketyl Anions in the Gas Phase:Â Photodetachment Excitation Spectroscopy of Benzophenone and Acetophenone Radical Anions Microsolvated with Methanolâ€. Journal of Physical Chemistry A, 2007, 111, 7646-7652.	1.1	8
93	Characterization of neutral fragments issued from the photodissociation of protonated tryptophane. Physical Chemistry Chemical Physics, 2007, 9, 5330.	1.3	31
94	Theoretical Analyses of the Morphological Development of the Hydrogen Bond Network in Protonated Methanol Clusters. Journal of Physical Chemistry A, 2007, 111, 9438-9445.	1.1	27
95	Magnitude and Nature of Interactions in Benzeneâ^'X (X = Ethylene and Acetylene) in the Gas Phase: Significantly Different CH/ĺ€ Interaction of Acetylene As Compared with Those of Ethylene and Methane. Journal of Physical Chemistry A, 2007, 111, 753-758.	1.1	110
96	Stimulated Raman spectroscopy combined with vacuum ultraviolet photoionization: Application to jet-cooled methanol clusters as a new vibrational spectroscopic method for size-selected species in the gas phase. Chemical Physics Letters, 2007, 442, 217-219.	1.2	9
97	Origin of the Attraction in Aliphatic Câ `'H/İ€ Interactions:Â Infrared Spectroscopic and Theoretical Characterization of Gas-Phase Clusters of Aromatics with Methane. Journal of Physical Chemistry A, 2006, 110, 10583-10590.	1.1	99
98	Magnitude of the CH/Ï€ Interaction in the Gas Phase:Â Experimental and Theoretical Determination of the Accurate Interaction Energy in Benzene-methane. Journal of Physical Chemistry A, 2006, 110, 4397-4404.	1.1	139
99	Magnitude and Directionality of the Interaction Energy of the Aliphatic CH/π Interaction:  Significant Difference from Hydrogen Bond. Journal of Physical Chemistry A, 2006, 110, 10163-10168.	1.1	124
100	Infrared Vibrational Autodetachment Spectroscopy of Microsolvated Benzonitrile Radical Anions. Journal of Physical Chemistry A, 2006, 110, 13712-13716.	1.1	10
101	Infrared spectroscopy of size-selected neutral clusters combined with vacuum-ultraviolet-photoionization mass spectrometry. Chemical Physics Letters, 2006, 422, 378-381.	1.2	41
102	Infrared and Electronic Spectroscopy of a Model System for the Nucleophilic Substitution Intermediate in the Gas Phase:  The Câ^'N Valence Bond Formation in the Benzeneâ^'Ammonia Cluster Cation. Journal of Physical Chemistry A, 2006, 110, 6387-6390.	1.1	18
103	Complete infrared spectroscopic characterization of phenol-borane-trimethylamine dihydrogen-bonded complex in the gas phase. Journal of Chemical Physics, 2006, 124, 241103.	1.2	20
104	Infrared predissociation spectroscopy of ammonia cluster cations (NH3)n+ (n=2–4) produced by vacuum-ultraviolet photoionization. Journal of Chemical Physics, 2006, 125, 164320.	1.2	15
105	A study on aromatic C–Hâ< X (X=N, O) hydrogen bonds in 1,2,4,5-tetrafluorobenzene clusters using infrared spectroscopy and ab initio calculations. Chemical Physics Letters, 2005, 409, 57-62.	1.2	27
106	Infrared and ab Initio Studies on 1,2,4,5-Tetrafluorobenzene Clusters with Methanol and 2,2,2-Trifluoroethanol: Presence and Absence of an Aromatic Câ^H···O Hydrogen Bond. Journal of Physical Chemistry A, 2005, 109, 915-921.	1.1	24
107	Electronic and Infrared Spectroscopy of [Benzeneâ^'(Methanol)n]+(n= 1â^'6). Journal of Physical Chemistry A, 2005, 109, 9471-9480.	1.1	13
108	Morphology of Protonated Methanol Clusters:  An Infrared Spectroscopic Study of Hydrogen Bond Networks of H+(CH3OH)n (n = 4â~15). Journal of Physical Chemistry A, 2005, 109, 138-141.	1.1	51

#	Article	IF	CITATIONS
109	Laser Spectroscopic Investigation of Salicylic Acids Hydrogen Bonded with Water in Supersonic Jets:Â Microsolvation Effects for Excited State Proton Dislocation. Journal of Physical Chemistry A, 2005, 109, 2498-2504.	1.1	25
110	Infrared Spectroscopic Evidence for Protonated Water Clusters Forming Nanoscale Cages ChemInform, 2004, 35, no.	0.1	3
111	A direct experimental evidence for an aromatic C–Hâ∢O hydrogen bond by fluorescence-detected infrared spectroscopy. Chemical Physics Letters, 2004, 394, 45-48.	1.2	33
112	Electronic spectroscopy of benzene–water cluster cations, [C6H6–(H2O)n]+ (n=1–4): spectroscopic evidence for phenyl radical formation through size-dependent intracluster proton transfer reactions. Chemical Physics Letters, 2004, 399, 412-416.	1.2	35
113	Infrared Spectroscopic Evidence for Protonated Water Clusters Forming Nanoscale Cages. Science, 2004, 304, 1134-1137.	6.0	493
114	Infrared Spectroscopy of Size-Selected Benzeneâ^'Water Cluster Cations [C6H6â^'(H2O)n]+ (n = 1â^'23): Hydrogen Bond Network Evolution and Microscopic Hydrophobicity. Journal of Physical Chemistry A, 2004, 108, 10656-10660.	1.1	55
115	A Molecular Cluster Study on Activated CH/ï€ Interactions: Infrared Spectroscopy of Aromatic Moleculeâ°'Acetylene Clusters. Journal of Physical Chemistry A, 2004, 108, 2652-2658.	1.1	67
116	Binding Energy of the Benzeneâ^'Water Cluster Cation:Â An Ar-Mediated IR Photodissociation Study. Journal of Physical Chemistry A, 2004, 108, 8269-8272.	1.1	35
117	Substitution effects on the excited-state intramolecular proton transfer of salicylic acid: an infrared spectroscopic study on the OH stretching vibrations of jet-cooled 5-methoxysalicylic acid. Chemical Physics Letters, 2003, 376, 788-793.	1.2	22
118	NH Stretching Vibrations of Jet-Cooled Aniline and Its Derivatives in the Neutral and Cationic Ground States. Journal of Physical Chemistry A, 2003, 107, 3678-3686.	1.1	48
119	Infrared spectroscopy of hydrated benzene cluster cations, [C6H6-(H2O)n]+ (n = 1–6): Structural changes upon photoionization and proton transfer reactions. Physical Chemistry Chemical Physics, 2003, 5, 1137-1148.	1.3	79
120	An Infrared Study of ï€-Hydrogen Bonds in Micro-solvated Phenol: OH Stretching Vibrations of Phenolâ^'X (X = C6H6, C2H4, and C2H2) Clusters in the Neutral and Cationic Ground States. Journal of Physical Chemistry A, 2002, 106, 8554-8560.	1.1	76
121	Direct Observation of Weak Hydrogen Bonds in Microsolvated Phenol: Infrared Spectroscopy of OH Stretching Vibrations of Phenolâ^'CO and â^'CO2 in S0 and D0. Journal of Physical Chemistry A, 2002, 106, 10124-10129.	1.1	47
122	Vibrational spectroscopic evidence of unconventional hydrogen bonds. International Journal of Mass Spectrometry, 2002, 220, 289-312.	0.7	51
123	Infrared Spectroscopy of the OH Stretching Vibrations of Jet-Cooled Salicylic Acid and Its Dimer in SO and S1. Journal of Physical Chemistry A, 2001, 105, 10673-10680.	1.1	59
124	Infrared Photodissociation Spectroscopy of n-Propylbenzeneâ~'Ar Cluster Cations:  Charge Delocalization between the Aromatic Ring and the Alkyl Chain. Journal of Physical Chemistry A, 2001, 105, 4882-4886.	1.1	9
125	Infrared spectroscopy of the benzene–H2O cluster cation: experimental study on the drastic structural change upon photoionization. Chemical Physics Letters, 2001, 349, 431-436.	1.2	63
126	Autoionization-Detected Infrared Spectroscopy of Jet-Cooled Naphthol Cations. Journal of Physical Chemistry A, 2000, 104, 7227-7232.	1.1	20

#	Article	IF	CITATIONS
127	Autoionization-detected infrared (ADIR) spectroscopy of molecular cations. Journal of Electron Spectroscopy and Related Phenomena, 2000, 108, 21-30.	0.8	10
128	Vibrationally autoionizing Rydberg clusters: Spectroscopy and dynamics of pyrazine–Ar and –Xe clusters. Journal of Chemical Physics, 2000, 113, 8000-8008.	1.2	7
129	Infrared spectroscopy of CH stretching vibrations of jet-cooled alkylbenzene cations by using the "messenger―technique. Journal of Chemical Physics, 2000, 112, 6275-6284.	1.2	68
130	Autoionization-detected infrared spectroscopy of intramolecular hydrogen bonds in aromatic cations. II. Unconventional intramolecular hydrogen bonds. Journal of Chemical Physics, 2000, 112, 137-148.	1.2	31
131	Infrared spectroscopy of the phenol-N2 cluster in SO and DO: Direct evidence of the in-plane structure of the cluster. Journal of Chemical Physics, 1999, 110, 11125-11128.	1.2	61
132	Autoionization-detected infrared spectroscopy of jet-cooled aromatic cations in the gas phase: CH stretching vibrations of isolated p-ethylphenol cations. Chemical Physics Letters, 1999, 303, 289-294.	1.2	23
133	Autoionization-detected infrared spectroscopy of intramolecular hydrogen bonds in aromatic cations. I. Principle and application to fluorophenol and methoxyphenol. Journal of Chemical Physics, 1999, 110, 4238-4247.	1.2	69
134	Vibrational spectroscopy of small-sized hydrogen-bonded clusters and their ions. International Reviews in Physical Chemistry, 1998, 17, 331-361.	0.9	361
135	Infrared Spectroscopy of Intramolecular Hydrogen-Bonded OH Stretching Vibrations in Jet-Cooled Methyl Salicylate and Its Clusters. Journal of Physical Chemistry A, 1998, 102, 9779-9784.	1.1	40
136	A New Type of Intramolecular Hydrogen Bonding:Â Hydroxylâ^`Methyl Interactions in theo-Cresol Cation. Journal of the American Chemical Society, 1998, 120, 13256-13257.	6.6	30
137	Ionization detected vibrational spectroscopy of size-selected hydrogen-bonding clusters of phenol. , 1997, , .		0
138	Observation of Intramolecular Hydrogen Bonds ofo-Fluorophenol Ions by Using Autoionization Detected Infrared Spectroscopy. Chemistry Letters, 1997, 26, 1099-1100.	0.7	15
139	Autoionization-Detected Infrared Spectroscopy of Molecular Ions. Journal of Physical Chemistry A, 1997, 101, 5963-5965.	1.1	59
140	Infrared Spectroscopy of (Phenol)n+(n= 2â^'4) and (Phenolâ^'Benzene)+Cluster Ions. Journal of Physical Chemistry A, 1997, 101, 1798-1803.	1.1	24
141	Photodetachment of small water cluster anions in the near-infrared through the visible region. Chemical Physics Letters, 1997, 264, 292-296.	1.2	36
142	Photodissociation of NO2 at 355 nm: pair correlation. Chemical Physics Letters, 1997, 277, 33-38.	1.2	25
143	Characterization of the Hydrogen-Bonded Cluster Ions [Phenolâ^'(H2O)n]+(n= 1â^'4), (Phenol)2+, and (Phenolâ^'Methanol)+As Studied by Trapped Ion Infrared Multiphoton Dissociation Spectroscopy of Their OH Stretching Vibrations. The Journal of Physical Chemistry, 1996, 100, 8131-8138.	2.9	88
144	Infrared spectroscopy of precursor clusters for nucleophilic substitution reactions: fluorobenzene-(CH3OH)n (n = 1 and 2). Chemical Physics Letters, 1996, 256, 1-7.	1.2	24

Аѕика Ғијіі

#	Article	IF	CITATIONS
145	Structures of size-selected hydrogen-bonded phenol-(H2O)n clusters in S0, S1 and ion. International Journal of Mass Spectrometry and Ion Processes, 1996, 159, 111-124.	1.9	63
146	Infrared Spectroscopy of Hydrogen-Bonded Phenolâ^'Amine Clusters in Supersonic Jets. The Journal of Physical Chemistry, 1996, 100, 16053-16057.	2.9	147
147	Infrared spectroscopy of OH stretching vibrations of hydrogenâ€bonded tropoloneâ€(H2O)n (n=1–3) and tropoloneâ€(CH3OH)n (n=1 and 2) clusters. Journal of Chemical Physics, 1996, 105, 2618-2627.	1.2	72
148	Laser-induced fluorescence of jet-cooled chlorotoluene molecules. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 92, 1-5.	2.0	14
149	Threeâ€color triple resonance spectroscopy of highly excited ng Rydberg states of NO: Decay dynamics of high†Rydberg states. Journal of Chemical Physics, 1995, 103, 6029-6039.	1.2	29
150	Laser Spectroscopic Investigation of High Rydberg States of no: Decay Dynamics Near the First Ionization Threshold. Laser Chemistry, 1994, 13, 259-271.	0.5	15
151	Infrared dissociation spectroscopy of the OH stretching vibration of phenol—rare gas van der Waals cluster ions. Chemical Physics Letters, 1994, 225, 104-107.	1.2	77
152	Laser investigation of the competition between rotational autoionization and predissociation in superexcitednpRydberg states of NO. Journal of Chemical Physics, 1993, 98, 4581-4585.	1.2	32
153	Rotational state dependence of decay dynamics in the superexcited 7fRydberg state (Ï=1) of NO. Journal of Chemical Physics, 1992, 97, 327-334.	1.2	30
154	Detection of nitrogen atoms produced by predissociation of superexcited Rydberg states of NO. Chemical Physics Letters, 1991, 182, 304-309.	1.2	28
155	Vacuum ultraviolet–visible double resonance spectroscopy of NO. Observation of the high excited ns and nd Rydberg series. Journal of Chemical Physics, 1989, 90, 6993-6999.	1.2	15
156	Production of rotationally state selected ions by resonant enhanced multiphoton ionization of CO in a supersonic free jet. Chemical Physics Letters, 1989, 161, 93-97.	1.2	28
157	Nascent rotational distribution and the relaxation of the N+2ion produced by double resonant multiphoton ionization. Journal of Chemical Physics, 1988, 88, 5307-5313.	1.2	27
158	Photodissociation of formic acid: internal state distribution of hydroxyl fragment. The Journal of Physical Chemistry, 1987, 91, 6095-6097.	2.9	25
159	Two-color double resonant multiphoton ionization of nitrogen and the LIF detection of nitrogen molecule ion (1+) produced by multiphoton ionization. The Journal of Physical Chemistry, 1987, 91, 3125-3128.	2.9	13
160	Understanding Fermi resonances behind the complex vibrational spectra of the methyl groups in simple alcohol, thiol, and their ethers. Journal of the Chinese Chemical Society, 0, , .	0.8	1