Kyri Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676396/publications.pdf Version: 2024-02-01

KVDI RAKED

#	Article	IF	CITATIONS
1	Energy Storage Sizing Taking Into Account Forecast Uncertainties and Receding Horizon Operation. IEEE Transactions on Sustainable Energy, 2017, 8, 331-340.	8.8	151
2	Foresee: A user-centric home energy management system for energy efficiency and demand response. Applied Energy, 2017, 205, 1583-1595.	10.1	140
3	Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables. IEEE Transactions on Power Systems, 2017, 32, 3427-3438.	6.5	121
4	Network-Cognizant Voltage Droop Control for Distribution Grids. IEEE Transactions on Power Systems, 2018, 33, 2098-2108.	6.5	94
5	Data-Based Distributionally Robust Stochastic Optimal Power Flow—Part I: Methodologies. IEEE Transactions on Power Systems, 2019, 34, 1483-1492.	6.5	85
6	Distributed MPC for Efficient Coordination of Storage and Renewable Energy Sources Across Control Areas. IEEE Transactions on Smart Grid, 2016, 7, 992-1001.	9.0	71
7	Learning Optimal Solutions for Extremely Fast AC Optimal Power Flow. , 2020, , .		56
8	Joint Chance Constraints in AC Optimal Power Flow: Improving Bounds Through Learning. IEEE Transactions on Smart Grid, 2019, 10, 6376-6385.	9.0	47
9	Data-Based Distributionally Robust Stochastic Optimal Power Flow—Part II: Case Studies. IEEE Transactions on Power Systems, 2019, 34, 1493-1503.	6.5	38
10	Learning Warm-Start Points For Ac Optimal Power Flow. , 2019, , .		37
11	Evaluation of low-exergy heating and cooling systems and topology optimization for deep energy savings at the urban district level. Energy Conversion and Management, 2020, 222, 113106.	9.2	37
12	Efficient relaxations for joint chance constrained AC optimal power flow. Electric Power Systems Research, 2017, 148, 230-236.	3.6	35
13	Modeling stationary lithium-ion batteries for optimization and predictive control. , 2017, , .		30
14	Convex Relaxation of Grid-Connected Energy Storage System Models With Complementarity Constraints in DC OPF. IEEE Transactions on Smart Grid, 2020, 11, 4070-4079.	9.0	25
15	Stochastic Model Predictive Control for Demand Response in a Home Energy Management System. , 2018, , .		24
16	Distribution-agnostic stochastic optimal power flow for distribution grids. , 2016, , .		21
17	Assessments of data centers for provision of frequency regulation. Applied Energy, 2020, 277, 115621.	10.1	19
18	Optimal storage sizing using two-stage stochastic optimization for intra-hourly dispatch. , 2014, , .		18

Kyri Baker

#	Article	IF	CITATIONS
19	Optimal integration of intermittent energy sources using distributed multi-step optimization. , 2012, , .		17
20	Learning-Accelerated ADMM for Distributed DC Optimal Power Flow. , 2022, 6, 1-6.		17
21	Optimal Renewable Resource Allocation and Load Scheduling of Resilient Communities. Energies, 2020, 13, 5683.	3.1	16
22	Locational sensitivity investigation on PV hosting capacity and fast track PV screening. , 2016, , .		14
23	User-preference-driven model predictive control of residential building loads and battery storage for demand response. , 2017, , .		14
24	Stochastic Optimal Power Flow Based on Data-Driven Distributionally Robust Optimization. , 2018, , .		13
25	Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization. , 2021, , .		13
26	An optimization framework for the network design of advanced district thermal energy systems. Energy Conversion and Management, 2022, 266, 115839.	9.2	10
27	Incentive-based voltage regulation in distribution networks. , 2017, , .		7
28	Consumer privacy protection using flexible thermal loads: Theoretical limits and practical considerations. Applied Energy, 2021, 281, 116075.	10.1	7
29	Inclusion of inter-temporal constraints into a distributed Newton-Raphson method. , 2012, , .		6
30	Frequency Regulation Services from Connected Residential Devices. , 2016, , .		6
31	JOINT CHANCE CONSTRAINTS REDUCTION THROUGH LEARNING IN ACTIVE DISTRIBUTION NETWORKS. , 2018, , .		6
32	Optimal power flow for distribution systems under uncertain forecasts. , 2016, , .		5
33	Jacobian singularities in optimal power flow problems caused by intertemporal constraints. , 2013, , .		4
34	Network-cognizant design of decentralized Volt/VAR controllers. , 2017, , .		4
35	Sensitivity Analysis of Photovoltaic System Design Parameters to Passively Mitigate Ramp Rates. IEEE Journal of Photovoltaics, 2021, 11, 545-551.	2.5	3
36	The Role of Demand-Side Flexibility in Hedging Electricity Price Volatility in Distribution Grids. , 2019, ,		2

Kyri Baker

#	Article	IF	CITATIONS
37	OPF-Learn: An Open-Source Framework for Creating Representative AC Optimal Power Flow Datasets. , 2022, , .		2
38	A Coordination Mechanism For Reducing Price Spikes in Distribution Grids. Energies, 2020, 13, 2500.	3.1	1
39	Optimal Sizing of an Energy Storage Portfolio Considering Multiple Timescales. , 2021, , .		1
40	Incorporating thermoelectric power plant water use into multi-objective optimal power flow. Environmental Research: Infrastructure and Sustainability, 0, , .	2.3	1
41	MAFSA: Mars Autonomous and Foldable Solar Array. New Space, 2018, 6, 308-319.	0.8	0
42	Dymola-Enabled Reinforcement Learning for Real-time Generator Set-point Optimization. , 2022, , .		0