Antonio A Romero Reyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676187/publications.pdf

Version: 2024-02-01

194 papers 7,072 citations

43 h-index 74 g-index

206 all docs 206 docs citations

206 times ranked 8295 citing authors

#	Article	IF	CITATIONS
1	Glycerol Valorization towards a Benzoxazine Derivative through a Milling and Microwave Sequential Strategy. Molecules, 2022, 27, 632.	1.7	3
2	Biodiesel Is Dead: Long Life to Advanced Biofuelsâ€"A Comprehensive Critical Review. Energies, 2022, 15, 3173.	1.6	24
3	Continuous flow study of isoeugenol to vanillin: A bio-based iron oxide catalyst. Catalysis Today, 2021, 368, 281-290.	2.2	3
4	Biomass valorization: Catalytic approaches using benign-by-design nanomaterials. Advances in Inorganic Chemistry, 2021, 77, 27-58.	0.4	5
5	Hydrogenation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carbonyl Compounds over Covalently Heterogenized Ru(II) Diphosphine Complexes on AlPO4-Sepiolite Supports. Catalysts, 2021, 11, 289.	1.6	1
6	Evaluation of Dimethyl Carbonate as Alternative Biofuel. Performance and Smoke Emissions of a Diesel Engine Fueled with Diesel/Dimethyl Carbonate/Straight Vegetable Oil Triple Blends. Sustainability, 2021, 13, 1749.	1.6	7
7	Catalytic wet hydrogen peroxide oxidation of isoeugenol to vanillin using microwave-assisted synthesized metal loaded catalysts. Molecular Catalysis, 2021, 506, 111537.	1.0	5
8	Enzymatic Production of Ecodiesel by Using a Commercial Lipase CALB, Immobilized by Physical Adsorption on Mesoporous Organosilica Materials. Catalysts, 2021, 11, 1350.	1.6	5
9	Continuous flow synthesis of menthol <i>via</i> tandem cyclisation–hydrogenation of citronellal catalysed by scrap catalytic converters. Green Chemistry, 2020, 22, 379-387.	4.6	24
10	Outlook for Direct Use of Sunflower and Castor Oils as Biofuels in Compression Ignition Diesel Engines, Being Part of Diesel/Ethyl Acetate/Straight Vegetable Oil Triple Blends. Energies, 2020, 13, 4836.	1.6	17
11	Evaluation of acid properties of mechanochemically synthesized supported niobium oxide catalysts in the alkylation of toluene. Molecular Catalysis, 2020, 493, 111092.	1.0	8
12	Acetone Prospect as an Additive to Allow the Use of Castor and Sunflower Oils as Drop-In Biofuels in Diesel/Acetone/Vegetable Oil Triple Blends for Application in Diesel Engines. Molecules, 2020, 25, 2935.	1.7	16
13	Biofuels from Diethyl Carbonate and Vegetable Oils for Use in Triple Blends with Diesel Fuel: Effect on Performance and Smoke Emissions of a Diesel Engine. Energies, 2020, 13, 6584.	1.6	10
14	Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine. Energies, 2020, 13, 1542.	1.6	25
15	Optimization by response surface methodology of the reaction conditions in 1,3-selective transesterification of sunflower oil, by using CaO as heterogeneous catalyst. Molecular Catalysis, 2020, 484, 110804.	1.0	8
16	Fe-Containing MOFs as Seeds for the Preparation of Highly Active Fe/Al-SBA-15 Catalysts in the NAlkylation of Aniline. Molecules, 2019, 24, 2695.	1.7	6
17	Reconstruction of humins formation mechanism from decomposition products: A GC-MS study based on catalytic continuous flow depolymerizations. Molecular Catalysis, 2019, 479, 110564.	1.0	16
18	Continuous flow synthesis of amines from the cascade reactions of nitriles and carbonyl-containing compounds promoted by Pt-modified titania catalysts. Green Chemistry, 2019, 21, 300-306.	4.6	21

#	Article	IF	CITATIONS
19	Performance and Emission Quality Assessment in a Diesel Engine of Straight Castor and Sunflower Vegetable Oils, in Diesel/Gasoline/Oil Triple Blends. Energies, 2019, 12, 2181.	1.6	13
20	Post-synthetic Mechanochemical Incorporation of Al-Species into the Framework of Porous Materials: Toward More Sustainable Redox Chemistries. ACS Sustainable Chemistry and Engineering, 2019, 7, 9537-9543.	3.2	11
21	Valorization of Humins-Extracted 5-Methoxymethylfurfural: Toward High Added Value Furanics via Continuous Flow Catalytic Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 16065-16070.	1.8	13
22	Rhizomucor miehei Lipase Supported on Inorganic Solids, as Biocatalyst for the Synthesis of Biofuels: Improving the Experimental Conditions by Response Surface Methodology. Energies, 2019, 12, 831.	1.6	10
23	Mechanochemically Synthesized Supported Magnetic Fe-Nanoparticles as Catalysts for Efficient Vanillin Production. Catalysts, 2019, 9, 290.	1.6	8
24	Continuous-Flow Hydrogenation of Methyl Levulinate Promoted by Zr-Based Mesoporous Materials. Catalysts, 2019, 9, 142.	1.6	23
25	Controllable Design of Polypyrrole-Iron Oxide Nanocoral Architectures for Supercapacitors with Ultrahigh Cycling Stability. ACS Applied Energy Materials, 2019, 2, 2161-2168.	2.5	25
26	Biodiesel at the Crossroads: A Critical Review. Catalysts, 2019, 9, 1033.	1.6	57
27	Synthesis, Performance and Emission Quality Assessment of Ecodiesel from Castor Oil in Diesel/Biofuel/Alcohol Triple Blends in a Diesel Engine. Catalysts, 2019, 9, 40.	1.6	27
28	Mechanochemical Preparation of Novel Polysaccharide-Supported Nb2O5 Catalysts. Catalysts, 2019, 9, 38.	1.6	6
29	Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. Journal of Cleaner Production, 2019, 207, 411-417.	4.6	85
30	Highly efficient direct oxygen electro-reduction by partially unfolded laccases immobilized on waste-derived magnetically separable nanoparticles. Nanoscale, 2018, 10, 3961-3968.	2.8	31
31	Towards industrial furfural conversion: Selectivity and stability of palladium and platinum catalysts under continuous flow regime. Catalysis Today, 2018, 308, 32-37.	2.2	45
32	Continuousâ€Flow Synthesis of Supported Magnetic Iron Oxide Nanoparticles for Efficient Isoeugenol Conversion into Vanillin. ChemSusChem, 2018, 11, 389-396.	3.6	33
33	Benign-by-Design Orange Peel-Templated Nanocatalysts for Continuous Flow Conversion of Levulinic Acid to N-Heterocycles. ACS Sustainable Chemistry and Engineering, 2018, 6, 16637-16644.	3.2	38
34	Evaluation of Lipases from Wild Microbial Strains as Biocatalysts in Biodiesel Production. Separations, 2018, 5, 53.	1.1	5
35	Encapsulated Laccases as Effective Electrocatalysts for Oxygen Reduction Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 11058-11062.	3.2	18
36	Integrated Mechanochemical/Microwave-Assisted Approach for the Synthesis of Biogenic Silica-Based Catalysts from Rice Husk Waste. ACS Sustainable Chemistry and Engineering, 2018, 6, 11555-11562.	3.2	22

#	Article	IF	CITATIONS
37	Mechanochemical synthesis of supported cobalt oxide nanoparticles on mesoporous materials as versatile bifunctional catalysts. Microporous and Mesoporous Materials, 2018, 272, 129-136.	2.2	39
38	Mechanochemically synthesized Ag-based nanohybrids with unprecedented low toxicity in biomedical applications. Environmental Research, 2017, 154, 204-211.	3.7	12
39	Solventless mechanochemical preparation of novel magnetic bioconjugates. Chemical Communications, 2017, 53, 7635-7637.	2.2	26
40	Study on the pyrolysis products of two different hardwood lignins in the presence of NiO contained-zeolites. Biomass and Bioenergy, 2017, 103, 29-34.	2.9	22
41	Towards the photophysical studies of humin by-products. Chemical Communications, 2017, 53, 7015-7017.	2.2	14
42	Selective Oxidation of Isoeugenol to Vanillin over Mechanochemically Synthesized Aluminosilicate Supported Transition Metal Catalysts. ChemistrySelect, 2017, 2, 9546-9551.	0.7	16
43	Benign-by-design preparation of humin-based iron oxide catalytic nanocomposites. Green Chemistry, 2017, 19, 4423-4434.	4.6	57
44	Mechanochemical design of hemoglobin-functionalised magnetic nanomaterials for energy storage devices. Journal of Materials Chemistry A, 2017, 5, 16404-16411.	5.2	18
45	Wheat bran valorisation: Towards photocatalytic nanomaterials for benzyl alcohol photo-oxidation. Journal of Environmental Management, 2017, 203, 768-773.	3.8	11
46	New bio-nanocomposites based on iron oxides and polysaccharides applied to oxidation and alkylation reactions. Beilstein Journal of Organic Chemistry, 2017, 13, 1982-1993.	1.3	14
47	Application of Enzymatic Extracts from a CALB Standard Strain as Biocatalyst within the Context of Conventional Biodiesel Production Optimization. Molecules, 2017, 22, 2025.	1.7	14
48	Biochemical catalytic production of biodiesel., 2016,, 165-199.		9
49	Mechanochemical Synthesis of TiO2 Nanocomposites as Photocatalysts for Benzyl Alcohol Photo-Oxidation. Nanomaterials, 2016, 6, 93.	1.9	41
50	Encapsulated Laccases for the Roomâ€Temperature Oxidation of Aromatics: Towards Synthetic Lowâ€Molecularâ€Weight Lignins. ChemSusChem, 2016, 9, 756-762.	3.6	13
51	Insights into the activity, selectivity and stability of heterogeneous catalysts in the continuous flow hydroconversion of furfural. Catalysis Science and Technology, 2016, 6, 4705-4711.	2.1	45
52	Insights into the Microwave-Assisted Mild Deconstruction of Lignin Feedstocks Using NiO-Containing ZSM-5 Zeolites. ACS Sustainable Chemistry and Engineering, 2016, 4, 4305-4313.	3.2	29
53	Insights into the selective hydrogenation of levulinic acid to \hat{I}^3 -valerolactone using supported monoand bimetallic catalysts. Journal of Molecular Catalysis A, 2016, 417, 145-152.	4.8	42
54	Microwave-Assisted Conversion of Levulinic Acid to \hat{I}^3 -Valerolactone Using Low-Loaded Supported Iron Oxide Nanoparticles on Porous Silicates. Applied Sciences (Switzerland), 2015, 5, 532-543.	1.3	27

#	Article	IF	CITATIONS
55	Hierarchical Zeolites and their Catalytic Performance in Selective Oxidative Processes. ChemSusChem, 2015, 8, 1328-1333.	3.6	21
56	Continuous-Flow Hydroisomerization of C5–C7 Alkanes Using Mechanochemically Synthesized Supported Pt and Pd–SBA-15 Materials. Journal of Flow Chemistry, 2015, 5, 11-16.	1.2	5
57	The role of mesoporosity and Si/Al ratio in the catalytic etherification of glycerol with benzyl alcohol using ZSM-5 zeolites. Journal of Molecular Catalysis A, 2015, 406, 40-45.	4.8	20
58	Selectivity matters: Graphene oxide-mediated oxidative coupling of benzylamine to N‑benzylidine-1-phenylmethanamine under microwave irradiation. Journal of Molecular Catalysis A, 2015, 406, 19-22.	4.8	12
59	Continuous Flow Preparation of Iron Oxide Nanoparticles Supported on Porous Silicates. ChemCatChem, 2015, 7, 276-282.	1.8	6
60	Microwave-assisted hydroarylation of styrenes catalysed by transition metal oxide nanoparticles supported on mesoporous aluminosilicates. Journal of Molecular Catalysis A, 2015, 407, 32-37.	4.8	8
61	Bioinspired Porous ZnO Nanomaterials from Fungal Polysaccharides: Advanced Materials with Unprecedented Low Toxicityin Vitrofor Human Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 2716-2725.	3.2	19
62	Graphene oxide-catalysed oxidation reaction of unsaturated compounds under microwave irradiation. Catalysis Communications, 2015, 72, 133-137.	1.6	12
63	An overview on glycerol-free processes for the production of renewable liquid biofuels, applicable in diesel engines. Renewable and Sustainable Energy Reviews, 2015, 42, 1437-1452.	8.2	96
64	Mechanistic insights into the hydroconversion of cinnamaldehyde using mechanochemically-synthesized Pd/Al-SBA-15 catalysts. Green Chemistry, 2015, 17, 565-572.	4.6	20
65	Production of a Biofuel that Keeps the Glycerol as a Monoglyceride by Using Supported KF as Heterogeneous Catalyst. Energies, 2014, 7, 3764-3780.	1.6	12
66	A Biofuel Similar to Biodiesel Obtained by Using a Lipase from Rhizopus oryzae, Optimized by Response Surface Methodology. Energies, 2014, 7, 3383-3399.	1.6	14
67	Microwave-assisted oxidation of benzyl alcohols using supported cobalt based nanomaterials under mild reaction conditions. Green Processing and Synthesis, 2014, 3, 133-139.	1.3	3
68	Selective ethanolysis of sunflower oil with Lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation. New Biotechnology, 2014, 31, 596-601.	2.4	53
69	Mechanochemical Synthesis of Maghemite/Silica Nanocomposites: Advanced Materials for Aqueous Roomâ€Temperature Catalysis. ChemSusChem, 2014, 7, 1876-1880.	3.6	23
70	Catalytic conversion of starch into valuable furan derivatives using supported metal nanoparticles on mesoporous aluminosilicate materials. Catalysis Science and Technology, 2014, 4, 428-434.	2.1	25
71	Development of a new biodiesel that integrates glycerol, by using CaO as heterogeneous catalyst, in the partial methanolysis of sunflower oil. Fuel, 2014, 122, 94-102.	3.4	73
72	Efficient aromatic C–H bond activation using aluminosilicate-supported metal nanoparticles. Catalysis Communications, 2014, 48, 73-77.	1.6	13

#	Article	IF	Citations
73	Insights into the Active Species of Nanoparticleâ€Functionalized Hierarchical Zeolites in Alkylation Reactions. ChemCatChem, 2014, 6, 3530-3539.	1.8	15
74	Enzymatic production of biodiesel that avoids glycerol as byproduct, by using immobilized Rhizopus Oryzae lipase. New Biotechnology, 2014, 31, S94.	2.4	2
7 5	Production of a biodiesel-like biofuel without glycerol generation, by using Novozym 435, an immobilized Candida antarctica lipase. Bioresources and Bioprocessing, 2014, 1 , .	2.0	26
76	Efficient and simple reactive milling preparation of photocatalytically active porous ZnO nanostructures using biomass derived polysaccharides. Green Chemistry, 2014, 16, 2876-2885.	4.6	68
77	MAGBONS: Novel Magnetically Separable Carbonaceous Nanohybrids from Porous Polysaccharides. ChemCatChem, 2014, 6, 2847-2853.	1.8	8
78	Solventless mechanochemical synthesis of magnetic functionalized catalytically active mesoporous SBA-15 nanocomposites. Journal of Materials Chemistry A, 2014, 2, 387-393.	5.2	40
79	Technological challenges for the production of biodiesel in arid lands. Journal of Arid Environments, 2014, 102, 127-138.	1.2	29
80	Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: Catalyst screening. Applied Catalysis B: Environmental, 2014, 145, 43-55.	10.8	156
81	Biocatalytic Behaviour of Immobilized Rhizopus oryzae Lipase in the 1,3-Selective Ethanolysis of Sunflower Oil to Obtain a Biofuel Similar to Biodiesel. Molecules, 2014, 19, 11419-11439.	1.7	26
82	Activity of amino-functionalised mesoporous solid bases in microwave-assisted condensation reactions. Catalysis Communications, 2013, 33, 1-6.	1.6	12
83	Continuous flow nanocatalysis: reaction pathways in the conversion of levulinic acid to valuable chemicals. Green Chemistry, 2013, 15, 2786.	4.6	70
84	Versatile low-loaded mechanochemically synthesized supported iron oxide nanoparticles for continuous flow alkylations. RSC Advances, 2013, 3, 16292.	1.7	19
85	Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates. Green Chemistry, 2013, 15, 1232.	4.6	43
86	Evaluation of biomass-derived stabilising agents for colloidal silver nanoparticles via nanoparticle tracking analysis (NTA). RSC Advances, 2013, 3, 7119.	1.7	10
87	Nanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcohol. Green Chemistry, 2013, 15, 1530.	4.6	100
88	Natural porous agar materials from macroalgae. Carbohydrate Polymers, 2013, 92, 1555-1560.	5.1	26
89	Chemical transformations of glucose to value added products using Cu-based catalytic systems. Physical Chemistry Chemical Physics, 2013, 15, 12165.	1.3	49
90	Laser-driven heterogeneous catalysis: efficient amide formation catalysed by Au/SiO2 systems. Green Chemistry, 2013, 15, 2043.	4.6	58

#	Article	IF	CITATIONS
91	Simple Preparation of Novel Metal-Containing Mesoporous Starches. Materials, 2013, 6, 1891-1902.	1.3	8
92	Biofuel that Keeps Glycerol as Monoglyceride by 1,3-Selective Ethanolysis with Pig Pancreatic Lipase Covalently Immobilized on AlPO4 Support. Energies, 2013, 6, 3879-3900.	1.6	27
93	Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals. Challenges, 2012, 3, 114-132.	0.9	40
94	New Biofuel Integrating Glycerol into Its Composition Through the Use of Covalent Immobilized Pig Pancreatic Lipase. International Journal of Molecular Sciences, 2012, 13, 10091-10112.	1.8	30
95	Carbonaceous residues from biomass gasification as catalysts for biodiesel production. Journal of Natural Gas Chemistry, 2012, 21, 246-250.	1.8	43
96	Catalytic transformations of biomass-derived acids into advanced biofuels. Catalysis Today, 2012, 195, 162-168.	2.2	108
97	Insights into the microwave-assisted preparation of supported iron oxide nanoparticles on silica-type mesoporous materials. Green Chemistry, 2012, 14, 393-402.	4.6	30
98	Design and development of catalysts for Biomass-To-Liquid-Fischer–Tropsch (BTL-FT) processes for biofuels production. Energy and Environmental Science, 2012, 5, 5186-5202.	15.6	139
99	Efficient microwave-assisted production of furfural from C5 sugars in aqueous media catalysed by Brönsted acidic ionic liquids. Catalysis Science and Technology, 2012, 2, 1828.	2.1	87
100	Maximizing the Accessibility of Active Species in Weakly Acidic Zrâ€SBAâ€15 Materials. ChemCatChem, 2012, 4, 379-386.	1.8	16
101	Catalytic applications of mesoporous silica-based materials. Catalysis, 2012, , 253-280.	0.6	35
102	High alkylation activities of ball-milled synthesized low-load supported iron oxide nanoparticles on mesoporous aluminosilicates. Catalysis Today, 2012, 187, 65-69.	2.2	34
103	A Dry Milling Approach for the Synthesis of Highly Active Nanoparticles Supported on Porous Materials. ChemSusChem, 2011, 4, 1561-1565.	3.6	74
104	Production of a new second generation biodiesel with a low cost lipase derived from Thermomyces lanuginosus: Optimization by response surface methodology. Catalysis Today, 2011, 167, 107-112.	2.2	56
105	Production of glycerol-free and alternative biodiesels. , 2011, , 160-176.		O
106	One-step microwave-assisted asymmetric cyclisation/hydrogenation of citronellal to menthols using supported nanoparticles on mesoporous materials. Organic and Biomolecular Chemistry, 2010, 8, 2845.	1.5	28
107	Biomaterials supported CdS nanocrystals. Materials Chemistry and Physics, 2010, 124, 52-54.	2.0	8
108	A comprehensive study of reaction parameters in the enzymatic production of novel biofuels integrating glycerol into their composition. Bioresource Technology, 2010, 101, 6657-6662.	4.8	34

#	Article	IF	CITATIONS
109	Towards Greener and More Efficient C-C and C-Heteroatom Couplings: Present and Future. Current Organic Synthesis, 2010, 7, 568-586.	0.7	18
110	Biofuels for Transport: Prospects and Challenges. , 2010, , 171-210.		4
111	Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy and Environmental Science, 2010, 3, 1706.	15.6	224
112	Fe/Al synergy in Fe2O3 nanoparticles supported on porous aluminosilicate materials: excelling activities in oxidation reactions. Chemical Communications, 2010, 46, 7825.	2.2	81
113	Nanostructured Photocatalysts and Their Applications in the Photocatalytic Transformation of Lignocellulosic Biomass: An Overview. Materials, 2009, 2, 2228-2258.	1.3	168
114	Tunable shapes in supported metal nanoparticles: From nanoflowers to nanocubes. Materials Chemistry and Physics, 2009, 117, 408-413.	2.0	13
115	Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem, 2009, 2, 18-45.	3.6	702
116	Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: Partial 1,3-regiospecific alcoholysis of sunflower oil. Process Biochemistry, 2009, 44, 334-342.	1.8	78
117	Gas-phase Beckmann rearrangement of cyclododecanone oxime on Al,B-MCM-41 mesoporous materials. Journal of Materials Science, 2009, 44, 6741-6746.	1.7	3
118	Modified SBA-1 materials for the Knoevenagel condensation under microwave irradiation. Microporous and Mesoporous Materials, 2009, 118, 87-92.	2.2	24
119	Efficient hydrogenation of alkenes using a highly active and reusable immobilised Ru complex on AlPO4. Journal of Molecular Catalysis A, 2009, 308, 41-45.	4.8	23
120	Evidences of the in situ generation of highly active Lewis acid species on Zr-SBA-15. Applied Catalysis A: General, 2009, 371, 85-91.	2.2	54
121	Selective epoxidation of alkenes using highly active V-SBA-15 materials: microwave vs. conventional heating. Journal of Materials Chemistry, 2009, 19, 8603.	6.7	15
122	Microwave-assisted versatile hydrogenation of carbonyl compounds using supported metal nanoparticles. Organic and Biomolecular Chemistry, 2009, 7, 4821.	1.5	26
123	Preparation of Mesoporous Organically Modified Titanium Materials and their Activity in the Oxidation of Cyclohexene. Catalysis Letters, 2008, 126, 179-187.	1.4	8
124	Preparation of Highly Active and Dispersed Platinum Nanoparticles on Mesoporous Alâ€MCMâ€48 and Their Activity in the Hydroisomerisation of <i>nâ€</i> Octane. Chemistry - A European Journal, 2008, 14, 5988-5995.	1.7	30
125	Efficient Microwave Oxidation of Alcohols Using Lowâ€Loaded Supported Metallic Iron Nanoparticles. ChemSusChem, 2008, 1, 746-750.	3.6	74
126	Microwave oxidation of alkenes and alcohols using highly active and stable mesoporous organotitanium silicates. Journal of Molecular Catalysis A, 2008, 293, 17-24.	4.8	23

#	Article	IF	CITATIONS
127	Activity of Gallium and Aluminum SBA-15 materials in the Friedel–Crafts alkylation of toluene with benzyl chloride and benzyl alcohol. Applied Catalysis A: General, 2008, 349, 148-155.	2.2	71
128	Biofuels: a technological perspective. Energy and Environmental Science, 2008, 1, 542.	15.6	521
129	Microwave facile preparation of highly active and dispersed SBA-12 supported metal nanoparticles. Green Chemistry, 2008, 10, 853.	4.6	81
130	Al-, Ga- and AlGa-materials as catalysts for the N-methylation of aniline. Studies in Surface Science and Catalysis, 2008, 174, 1331-1334.	1.5	2
131	A microwave approach to the selective synthesis of ω-laurolactam. Green Chemistry, 2007, 9, 1109.	4.6	17
132	Catalytic performance of Al-MCM-41 materials in the N-alkylation of aniline. Journal of Molecular Catalysis A, 2007, 269, 190-196.	4.8	45
133	Ga-MCM-41 synthesis and catalytic activity in the liquid-phase isomerisation of $\hat{l}\pm$ -pinene. Microporous and Mesoporous Materials, 2007, 103, 333-340.	2.2	23
134	Novel mesoporous silicoaluminophosphates as highly active and selective materials in the Beckmann rearrangement of cyclohexanone and cyclododecanone oximes. Journal of Catalysis, 2007, 252, 1-10.	3.1	23
135	Screening of amorphous metal–phosphate catalysts for the oxidative dehydrogenation of ethylbenzene to styrene. Applied Catalysis B: Environmental, 2007, 70, 611-620.	10.8	69
136	Development of mesoporous Al,B-MCM-41 materials. Applied Catalysis B: Environmental, 2007, 70, 567-576.	10.8	30
137	Catechol O-methylation with dimethyl carbonate over different acid–base catalysts. New Journal of Chemistry, 2006, 30, 1228-1234.	1.4	26
138	Synthesis and characterization of novel mesoporous aluminosilicate MCM-41 containing aluminophosphate building units. Chemical Communications, 2006, , 1839.	2.2	16
139	Structural and Catalytic Properties of Amorphous Mesoporous AlPO4 Materials Prepared in the Presence of 2,4-Pentanedione and 2,5-Hexanedione as Aluminium Chelating Agents. Studies in Surface Science and Catalysis, 2006, 162, 315-322.	1.5	1
140	Influence of the acid–base properties in Si-MCM-41 and B-MCM-41 mesoporous materials on the activity and selectivity of É>-caprolactam synthesis. Applied Catalysis A: General, 2006, 299, 224-234.	2.2	48
141	Heterogeneization of a new Ru(II) homogeneous asymmetric hydrogenation catalyst containing BINAP and the N-tridentate bpea ligand, through covalent attachment on amorphous AlPO4 support. Topics in Catalysis, 2006, 40, 193-205.	1.3	20
142	NH4F effect in post-synthesis treatment of Al-MCM-41 mesoporous materials. Microporous and Mesoporous Materials, 2005, 84, 11-20.	2.2	48
143	Synthesis of acidic Al-MCM-48: influence of the Si/Al ratio, degree of the surfactant hydroxyl exchange, and post-treatment in NHF solution. Journal of Catalysis, 2005, 230, 327-338.	3.1	75
144	Vanadyl–aluminum binary phosphate: Al/V ratio influence on their structure and catalytic behavior in the 2-propanol conversion. Catalysis Today, 2003, 78, 269-280.	2.2	25

#	Article	IF	Citations
145	Influence of acid–base properties of catalysts in the gas-phase dehydration–dehydrogenation of cyclohexanol on amorphous AlPO4 and several inorganic solids. Applied Catalysis A: General, 2003, 243, 93-107.	2.2	71
146	Effect of Phosphate Precursor and Organic Additives on the Structural and Catalytic Properties of Amorphous Mesoporous AlPO4Materials. Chemistry of Materials, 2003, 15, 3352-3364.	3.2	72
147	Study on dry-media microwave azalactone synthesis on different supported KF catalysts: influence of textural and acid–base properties of supports. Perkin Transactions II RSC, 2002, , 227-234.	1.1	42
148	Properties of a glucose oxidase covalently immobilized on amorphous AlPO4 support. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 567-577.	1.8	36
149	Title is missing!. Catalysis Letters, 1999, 60, 229-235.	1.4	11
150	Acetonylacetone conversion on AlPO4–cesium oxide (5–30 wt%) catalysts. Catalysis Letters, 1999, 60, 145-149.	1.4	9
151	Covalent immobilization of acid phosphatase on amorphous AlPO4 support. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 473-481.	1.8	34
152	Structure, texture, acidity and catalytic performance of AlPO4-caesium oxide catalysts in 2-methyl-3-butyn-2-ol conversion. Journal of Materials Chemistry, 1999, 9, 827-835.	6.7	14
153	Title is missing!. Catalysis Letters, 1998, 52, 205-213.	1.4	22
154	Gasâ€phase pinacol conversion on AlPO4, γâ€Al2O3 and SiO2 catalysts. Catalysis Letters, 1998, 54, 91-93.	1.4	6
155	Structure, Texture, Surface Acidity, and Catalytic Activity of AlPO4–ZrO2(5–50 wt% ZrO2) Catalysts Prepared by a Sol–Gel Procedure. Journal of Catalysis, 1998, 179, 483-494.	3.1	38
156	N-Alkylation of aniline with methanol over AlPO4Al2O3 catalysts. Applied Catalysis A: General, 1998, 166, 39-45.	2.2	33
157	Covalent immobilization of porcine pancreatic lipase on amorphous AlPO4 and other inorganic supports. Journal of Chemical Technology and Biotechnology, 1998, 72, 249-254.	1.6	35
158	2-Methyl-3-butyn-2-ol conversion on AlPO4-cesium oxide (20 wt.%) catalysts obtained by impregnation with cesium chloride. Reaction Kinetics and Catalysis Letters, 1998, 65, 239-244.	0.6	2
159	Structure and texture of AlPO4-cesium oxide (20 wt.%) catalysts obtained by impregnation with cesium chloride. Reaction Kinetics and Catalysis Letters, 1998, 65, 245-251.	0.6	2
160	Gas-phase phenyl acetate conversion on AlPO4, Î ³ -Al2O3 and SiO2 catalysts. Reaction Kinetics and Catalysis Letters, 1998, 65, 107-112.	0.6	1
161	Isomerization of 3,3-dimethyl-1-butene over aluminum and chromium orthophosphates. Reaction Kinetics and Catalysis Letters, 1998, 64, 41-48.	0.6	7
162	Alkylation of phenol with dimethyl carbonate over AlPO4, Al2O3 and AlPO4-Al2O3 catalysts. Reaction Kinetics and Catalysis Letters, 1998, 63, 261-269.	0.6	8

#	Article	IF	Citations
163	Catalytic properties of sulfated and non-sulfated ZrO2–SiO2: effects of the sulfation submitted before or after the calcination process, in the cyclohexene isomerization reaction. Journal of Molecular Catalysis A, 1998, 135, 155-162.	4.8	8
164	Acidity and catalytic activity of AlPO4–B2O3 and Al2O3–B2O3 (5–30wt% B2O3) systems prepared by impregnation. Applied Catalysis A: General, 1998, 170, 159-168.	2.2	40
165	Structural and Textural Characterization of AlPO4–B2O3and Al2O3–B2O3(5–30 wt% B2O3) Systems Obtained by Boric Acid Impregnation. Journal of Catalysis, 1998, 173, 333-344.	3.1	50
166	Aluminosilicate Mesoporous Molecular Sieve MCM-48. Journal of Physical Chemistry B, 1998, 102, 123-128.	1.2	98
167	Covalent immobilization of glucose oxidase on AlPO4 as inorganic support. Progress in Biotechnology, 1998, , 505-512.	0.2	1
168	Kinetic studies of the dehydration of methanol over aluminosilicate and gallosilicate offretites. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1221-1224.	1.7	11
169	In Situ NMR Studies of the Conversion of Methanol into Gasoline on Aluminosilicate and Gallosilicate Offretites. Journal of Physical Chemistry B, 1997, 101, 5166-5171.	1.2	14
170	Synthesis and Characterization of the Mesoporous Silicate Molecular Sieve MCM-48. Journal of Physical Chemistry B, 1997, 101, 5294-5300.	1.2	173
171	N-Alkylation of Aniline with Methanol over CrPO4and CrPO4–AlPO4(5–50 wt% AlPO4) Catalysts. Journal of Catalysis, 1997, 172, 103-109.	3.1	36
172	Phenol methylation over CrPO4 and CrPO4â^'AlPO4 catalysts. Reaction Kinetics and Catalysis Letters, 1997, 62, 47-54.	0.6	9
173	Toluene methylation on AlPO4-Al2O3 catalysts (5–15 wt.% Al2O3). Reaction Kinetics and Catalysis Letters, 1996, 57, 61-70.	0.6	9
174	Catalytic Properties of ZrO2–SiO2: Effects of Sulfation in the Cyclohexene Isomerization Reaction. Journal of Catalysis, 1996, 161, 605-613.	3.1	27
175	Characterization of acidity in AlPO4-Al2O3 (5–15 wt% Al2O3) catalysts using pyridine temperature-programmed desorption. Thermochimica Acta, 1995, 261, 175-182.	1.2	4
176	Characterization of acidity in AlPO4Al2O3 (5–15 wt% Al2O3) catalysts using pyridine temperature programmed desorption. Thermochimica Acta, 1995, 265, 103-110.	1.2	6
177	Conversion of anisole in the presence of methanol over AlPO4â°Al2O3 catalysts modified with fluoride and sulfate anions. Reaction Kinetics and Catalysis Letters, 1995, 54, 99-106.	0.6	4
178	Conversion of 2-propanol over chromium orthophosphates. Reaction Kinetics and Catalysis Letters, 1995, 55, 133-141.	0.6	8
179	AlPO4â^Al2O3 catalysts with low alumina content, VII. Anisole conversion in the presence of methanol. Reaction Kinetics and Catalysis Letters, 1995, 56, 349-362.	0.6	4
180	Conversion of Alcohols (α-Methylated Series) on ALPO4 Catalysts. Journal of Catalysis, 1995, 151, 307-314.	3.1	75

#	Article	IF	CITATIONS
181	Conversion of 2-propanol over chromium aluminum orthophosphates. Catalysis Letters, 1995, 35, 143-154.	1.4	8
182	Effect of preparation method on the surface acidity and catalytic performance of iron orthophosphates in cyclohexene conversion. Journal of Materials Chemistry, 1995, 5, 2019.	6.7	8
183	Fluoride and Sulfate Treatment of AlPO4-Al2O3 Catalysts .I. Structure, Texture, Surface Acidity and Catalytic Performance in Cyclohexene Conversion and Cumene Cracking. Journal of Catalysis, 1994, 145, 107-125.	3.1	51
184	Fluoride treatment of AlPO4-Al2O3 catalysts. II. Poisoning experiments by bases for cyclohexene conversion and cumene cracking. Catalysis Letters, 1994, 24, 293-301.	1.4	7
185	Continuous flow toluene methylation over AlPO4 and AlPO4-Al2O3 catalysts. Catalysis Letters, 1994, 26, 159-167.	1.4	10
186	Catalytic performance of Fe-modified AlPO4 catalyst in cyclohexene skeletal isomerization. Reaction Kinetics and Catalysis Letters, 1994, 53, 13-23.	0.6	3
187	Chromium-aluminium orthophosphates, II. Effect of AlPO4 loading on structure and texture of		
		·	