Norbert Mehlmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676163/publications.pdf

Version: 2024-02-01

36 1,587 20 37 g-index

37 37 37 37 2322

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Efficient Green Light Acclimation of the Green Algae Picochlorum sp. Triggering Geranylgeranylated Chlorophylls. Frontiers in Bioengineering and Biotechnology, 2022, 10, 885977.	4.1	4
2	A Newly Designed Automatically Controlled, Sterilizable Flat Panel Photobioreactor for Axenic Algae Culture. Frontiers in Bioengineering and Biotechnology, 2021, 9, 697354.	4.1	13
3	Systems Biology Engineering of the Pantothenate Pathway to Enhance 3HB Productivity in Escherichia coli. Biotechnology and Bioprocess Engineering, 2021, 26, 621-629.	2.6	3
4	Identifying carbohydrate-active enzymes of Cutaneotrichosporon oleaginosus using systems biology. Microbial Cell Factories, 2021, 20, 205.	4.0	9
5	Oleaginous yeasts- substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microbial Cell Factories, 2021, 20, 220.	4.0	27
6	Greener aromatic antioxidants for aviation and beyond. Sustainable Energy and Fuels, 2020, 4, 2153-2163.	4.9	4
7	Microbial lipid production by oleaginous yeasts grown on Scenedesmus obtusiusculus microalgae biomass hydrolysate. Bioprocess and Biosystems Engineering, 2020, 43, 1629-1638.	3.4	27
8	Additive Analytics: Easy Transformation of Low-Cost Fused Deposition Modeling Three-Dimensional Printers for HPTLC Sample Application. ACS Omega, 2020, 5, 11147-11150.	3. 5	5
9	Towards high-throughput optimization of microbial lipid production: from strain development to process monitoring. Sustainable Energy and Fuels, 2020, 4, 5958-5969.	4.9	6
10	Engineering Escherichia coli FAB system using synthetic plant genes for the production of long chain fatty acids. Microbial Cell Factories, 2019, 18, 163.	4.0	19
11	Current understanding and biotechnological application of the bacterial diterpene synthase CotB2. Beilstein Journal of Organic Chemistry, 2019, 15, 2355-2368.	2.2	17
12	A sustainable, high-performance process for the economic production of waste-free microbial oils that can replace plant-based equivalents. Energy and Environmental Science, 2019, 12, 2717-2732.	30.8	45
13	Nutritional and Additive Uses of Chitin and Chitosan in the Food Industry. Sustainable Agriculture Reviews, 2019, , 1-43.	1.1	18
14	Multi-Factorial-Guided Media Optimization for Enhanced Biomass and Lipid Formation by the Oleaginous Yeast Cutaneotrichosporon oleaginosus. Frontiers in Bioengineering and Biotechnology, 2019, 7, 54.	4.1	42
15	GFP Scaffold-Based Engineering for the Production of Unbranched Very Long Chain Fatty Acids in Escherichia coli With Oleic Acid and Cerulenin Supplementation. Frontiers in Bioengineering and Biotechnology, 2019, 7, 408.	4.1	4
16	A Seagrassâ€Based Biorefinery for Generation of Single ell Oils for Biofuel and Oleochemical Production. Energy Technology, 2018, 6, 1026-1038.	3.8	18
17	Chloroplast Ca ²⁺ Fluxes into and across Thylakoids Revealed by Thylakoid-Targeted Aequorin Probes. Plant Physiology, 2018, 177, 38-51.	4.8	36
18	Identification of sesquiterpene synthases from the Basidiomycota Coniophora puteana for the efficient and highly selective \hat{l}^2 -copaene and cubebol production in E. coli. Microbial Cell Factories, 2018, 17, 164.	4.0	37

#	Article	IF	CITATIONS
19	Harvest of the Oleaginous Microalgae Scenedesmus obtusiusculus by Flocculation From Culture Based on Natural Water Sources. Frontiers in Bioengineering and Biotechnology, 2018, 6, 200.	4.1	19
20	Modular biomanufacturing for a sustainable production of terpenoid-based insect deterrents. Green Chemistry, 2018, 20, 2637-2650.	9.0	29
21	Strain selection of microalgae isolated from Tunisian coast: characterization of the lipid profile for potential biodiesel production. Bioprocess and Biosystems Engineering, 2018, 41, 1449-1459.	3.4	12
22	Matrix-free laser desorption ionization mass spectrometry as a functional tool for the analysis and differentiation of complex phenolic mixtures in propolis: a new approach to quality control. Analytical and Bioanalytical Chemistry, 2018, 410, 6187-6195.	3.7	11
23	A waste-free, microbial oil centered cyclic bio-refinery approach based on flexible macroalgae biomass. Applied Energy, 2018, 224, 1-12.	10.1	28
24	Opportunities and challenges in the development of Cutaneotrichosporon oleaginosus ATCC 20509 as a new cell factory for custom tailored microbial oils. Microbial Cell Factories, 2017, 16, 178.	4.0	45
25	Phosphorylation of <i>Arabidopsis</i> transketolase at Ser428 provides a potential paradigm for the metabolic control of chloroplast carbon metabolism. Biochemical Journal, 2014, 458, 313-322.	3.7	44
26	The effect of Translationally Controlled Tumour Protein (TCTP) on programmed cell death in plants. BMC Plant Biology, 2013, 13, 135.	3.6	47
27	Salt Stress Triggers Phosphorylation of the Arabidopsis Vacuolar K+ Channel TPK1 by Calcium-Dependent Protein Kinases (CDPKs). Molecular Plant, 2013, 6, 1274-1289.	8.3	152
28	A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. Journal of Experimental Botany, 2012, 63, 1751-1761.	4.8	76
29	Plant organellar calcium signalling: an emerging field. Journal of Experimental Botany, 2012, 63, 1525-1542.	4.8	296
30	Protein N-acylation overrides differing targeting signals. FEBS Letters, 2011, 585, 517-522.	2.8	43
31	The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant Journal, 2010, 63, 484-498.	5.7	203
32	Kinetic Analysis of 14-3-3-Inhibited <i>Arabidopsis thaliana</i> Nitrate Reductase. Biochemistry, 2010, 49, 8177-8186.	2.5	53
33	Functional Complementation of Yeast Mutants to Study Plant Signalling Pathways. Methods in Molecular Biology, 2009, 479, 235-245.	0.9	5
34	Experimental testing of predicted myristoylation targets involved in asymmetric cell division and calcium-dependent signalling. Cell Cycle, 2008, 7, 3709-3719.	2.6	65
35	Ubiquitin Lysine 63 Chain–Forming Ligases Regulate Apical Dominance in Arabidopsis. Plant Cell, 2007, 19, 1898-1911.	6.6	97
36	Functional interaction in establishment of ribosomal integrity between small subunit protein rpS6 and translational regulator rpL10/Grc5p. FEMS Yeast Research, 2004, 5, 271-280.	2.3	27