
Hirohito Kita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676096/publications.pdf Version: 2024-02-01

Ηιρομιτο Κιτλ

#	Article	IF	CITATIONS
1	TLR3-driven IFN-β antagonizes STAT5-activating cytokines and suppresses innate type 2 response in the lung. Journal of Allergy and Clinical Immunology, 2022, 149, 1044-1059.e5.	1.5	10
2	Blocking the inhibitory receptor programmed cell death 1 prevents allergic immune response and anaphylaxis in mice. Journal of Allergy and Clinical Immunology, 2022, 150, 178-191.e9.	1.5	5
3	How are airborne allergens remembered by the immune system?. Journal of Allergy and Clinical Immunology, 2022, 149, 1940-1942.	1.5	5
4	A mouse model of the LEAP study reveals a role for CTLA-4 in preventing peanut allergy induced by environmental peanut exposure. Journal of Allergy and Clinical Immunology, 2022, 150, 425-439.e3.	1.5	16
5	Gasdermin D pores for IL-33 release. Nature Immunology, 2022, 23, 989-991.	7.0	5
6	Image Analysis of Eosinophil Peroxidase Immunohistochemistry for Diagnosis of Eosinophilic Esophagitis. Digestive Diseases and Sciences, 2021, 66, 775-783.	1.1	16
7	Estrogen receptorâ€i± signaling increases allergenâ€induced ILâ€33 release and airway inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 255-268.	2.7	36
8	Mass cytometry reveals unique subsets of T cells and lymphoid cells in nasal polyps from patients with chronic rhinosinusitis (CRS). Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2222-2226.	2.7	8
9	Roles of innate lymphoid cells (ILCs) in allergic diseases: The 10-year anniversary for ILC2s. Journal of Allergy and Clinical Immunology, 2021, 147, 1531-1547.	1.5	42
10	Transient IL-33 upregulation in neonatal mouse lung promotes acute but not chronic type 2 immune responses induced by allergen later in life. PLoS ONE, 2021, 16, e0252199.	1.1	4
11	Gastrointestinal Eosinophil Responses in a Longitudinal, Randomized Trial of Peanut Oral Immunotherapy. Clinical Gastroenterology and Hepatology, 2021, 19, 1151-1159.e14.	2.4	41
12	Development and application of novel immunoassays for eosinophil granule major basic proteins to evaluate eosinophilia and myeloproliferative disorders. Journal of Immunological Methods, 2021, 493, 113015.	0.6	2
13	LYSMD3: A mammalian pattern recognition receptor for chitin. Cell Reports, 2021, 36, 109392.	2.9	19
14	Airway Exposure to Polyethyleneimine Nanoparticles Induces Type 2 Immunity by a Mechanism Involving Oxidative Stress and ATP Release. International Journal of Molecular Sciences, 2021, 22, 9071.	1.8	13
15	In vitro Culture with Cytokines Provides a Tool to Assess the Effector Functions of ILC2s in Peripheral Blood in Asthma. Journal of Asthma and Allergy, 2021, Volume 14, 13-22.	1.5	4
16	Therapeutic Antibodies for Nasal Polyposis Treatment: Where Are We Headed?. Clinical Reviews in Allergy and Immunology, 2020, 59, 141-149.	2.9	25
17	COX Inhibition Increases <i>Alternaria</i> -Induced Pulmonary Group 2 Innate Lymphoid Cell Responses and IL-33 Release in Mice. Journal of Immunology, 2020, 205, 1157-1166.	0.4	19
18	Eosinophils in Eosinophilic Esophagitis: The Road to Fibrostenosis is Paved With Good Intentions. Frontiers in Immunology, 2020, 11, 603295.	2.2	16

#	Article	IF	CITATIONS
19	Dexamethasone and lidocaine suppress eosinophilopoiesis from umbilical cord blood cells. Clinical and Molecular Allergy, 2020, 18, 24.	0.8	3
20	Increased Neonatal Lung IL-33 Expression Promotes Innate Type 2 Cytokine Production in Response to Acute Allergen Exposure in Later Life. , 2020, , .		0
21	Group 2 Innate Lymphoid Cells Promote Development of T Follicular Helper Cells and Initiate Allergic Sensitization to Peanuts. Journal of Immunology, 2020, 204, 3086-3096.	0.4	14
22	Noninvasive Diagnosis of Eosinophilic Esophagitis. Mayo Clinic Proceedings, 2020, 95, 432-434.	1.4	1
23	Fungal allergenâ€induced ILâ€33 secretion involves cholesterolâ€dependent, VDACâ€1â€mediated ATP release from the airway epithelium. Journal of Physiology, 2020, 598, 1829-1845.	1.3	17
24	TSLP and ILâ€33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate typeâ€2 airway inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1606-1617.	2.7	90
25	Allergic sensitization to peanuts is enhanced in mice fed a high-fat diet. AIMS Allergy and Immunology, 2020, 4, 88-99.	0.3	1
26	Advances in asthma, asthma-COPD overlap, and related biologics in 2018. Journal of Allergy and Clinical Immunology, 2019, 144, 906-919.	1.5	10
27	Early Life Represents a Vulnerable Time Window for IL-33–Induced Peripheral Lung Pathology. Journal of Immunology, 2019, 203, 1952-1960.	0.4	7
28	BCL6 modulates tissue neutrophil survival and exacerbates pulmonary inflammation following influenza virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11888-11893.	3.3	58
29	Eosinophil peroxidase, GATA3, and T-bet as tissue biomarkers in chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2019, 143, 2284-2287.e6.	1.5	10
30	Neonatal hyperoxia promotes asthma-like features through IL-33–dependent ILC2 responses. Journal of Allergy and Clinical Immunology, 2018, 142, 1100-1112.	1.5	39
31	Airway exposure initiates peanut allergy by involving the IL-1 pathway and T follicular helper cells in mice. Journal of Allergy and Clinical Immunology, 2018, 142, 1144-1158.e8.	1.5	90
32	IL-33–Responsive Group 2 Innate Lymphoid Cells Are Regulated by Female Sex Hormones in the Uterus. Journal of Immunology, 2018, 200, 229-236.	0.4	76
33	Baseline Gastrointestinal Eosinophilia Is Common in Oral Immunotherapy Subjects With IgE-Mediated Peanut Allergy. Frontiers in Immunology, 2018, 9, 2624.	2.2	49
34	Cellular Stress Response to Varicella-Zoster Virus Infection of Human Skin Includes Highly Elevated Interleukin-6 Expression. Open Forum Infectious Diseases, 2018, 5, ofy118.	0.4	19
35	Eosinophilic Inflammation in Peritoneal Fibrosis Patients Undergoing Peritoneal Dialysis. Contributions To Nephrology, 2018, 196, 1-4.	1.1	4
36	Innate and adaptive immune responses to fungi in the airway. Journal of Allergy and Clinical Immunology, 2018, 142, 353-363.	1.5	81

#	Article	IF	CITATIONS
37	Innate Immunity Induced by the Major Allergen Alt a 1 From the Fungus Alternaria Is Dependent Upon Toll-Like Receptors 2/4 in Human Lung Epithelial Cells. Frontiers in Immunology, 2018, 9, 1507.	2.2	18
38	Follicular helper T cells mediate IgE antibody response to airborne allergens. Journal of Allergy and Clinical Immunology, 2017, 139, 300-313.e7.	1.5	134
39	Unsupervised network mapping of commercially available immunoassay yields three distinct chronic rhinosinusitis endotypes. International Forum of Allergy and Rhinology, 2017, 7, 373-379.	1.5	33
40	Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 2017, 8, 14532.	5.8	1,008
41	Urinary Leukotriene E4 to Determine Aspirin Intolerance in Asthma: A Systematic Review and Meta-Analysis. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 990-997.e1.	2.0	39
42	Oxidative stress serves as a key checkpoint for ILâ€33 release by airway epithelium. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1521-1531.	2.7	94
43	IL-33 dysregulates regulatory T cells and impairs established immunologic tolerance in the lungs. Journal of Allergy and Clinical Immunology, 2017, 140, 1351-1363.e7.	1.5	85
44	Correlation of Symptoms, Clinical Signs, and Biomarkers of Inflammation in Postsurgical Chronic Rhinosinusitis. Annals of Otology, Rhinology and Laryngology, 2017, 126, 455-462.	0.6	10
45	Airway epithelial anion secretion and barrier function following exposure to fungal aeroallergens: role of oxidative stress. American Journal of Physiology - Cell Physiology, 2017, 313, C68-C79.	2.1	14
46	<scp>IL</scp> â€33: biological properties, functions, and roles in airway disease. Immunological Reviews, 2017, 278, 173-184.	2.8	182
47	Endogenous Protease Inhibitors in Airway Epithelial Cells Contribute to Eosinophilic Chronic Rhinosinusitis. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 737-747.	2.5	49
48	Diagnostic Utility of Urinary LTE4 in Asthma, Allergic Rhinitis, Chronic Rhinosinusitis, Nasal Polyps, and Aspirin Sensitivity. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 665-670.	2.0	53
49	Group 2 innate lymphoid cells are increased in nasal polyps in patients with eosinophilic chronic rhinosinusitis. Clinical Immunology, 2016, 170, 1-8.	1.4	41
50	Influence of HLAâ€DR polymorphism and allergic sensitization on humoral immune responses to intact pneumococcus in a transgenic mouse model. Hla, 2016, 88, 25-34.	0.4	2
51	Group 2 Innate Lymphoid Cells Promote an Early Antibody Response to a Respiratory Antigen in Mice. Journal of Immunology, 2016, 197, 1335-1342.	0.4	48
52	<scp>IL</scp> â€33 mediates reactive eosinophilopoiesis in response to airborne allergen exposure. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 977-988.	2.7	39
53	Symptoms Have Modest Accuracy in Detecting Endoscopic and Histologic Remission in Adults With Eosinophilic Esophagitis. Gastroenterology, 2016, 150, 581-590.e4.	0.6	251
54	ATP drives eosinophil effector responses through P2 purinergic receptors. Allergology International, 2015, 64, S30-S36.	1.4	25

#	Article	IF	CITATIONS
55	B Cells Play Key Roles in Th2-Type Airway Immune Responses in Mice Exposed to Natural Airborne Allergens. PLoS ONE, 2015, 10, e0121660.	1.1	21
56	ILC2s and fungal allergy. Allergology International, 2015, 64, 219-226.	1.4	26
57	Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Science Translational Medicine, 2015, 7, 284ra60.	5.8	142
58	Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 98-103.	1.1	202
59	Airway responsiveness in CD38-deficient mice in allergic airway disease: studies with bone marrow chimeras. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L485-L493.	1.3	18
60	Symptom-Based Clustering in Chronic Rhinosinusitis Relates to History of Aspirin Sensitivity and Postsurgical Outcomes. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 934-940.e3.	2.0	30
61	Accuracy, Safety, and Tolerability of Tissue Collection by Cytosponge vs Endoscopy for Evaluation of Eosinophilic Esophagitis. Clinical Gastroenterology and Hepatology, 2015, 13, 77-83.e2.	2.4	132
62	<i>Alternaria</i> Inhibits Double-stranded RNA-Induced Cytokines Productions through TLR3. Practica Otologica, Supplement, 2015, 143, 117-126.	0.0	0
63	Elevations in vascular markers and eosinophils in chronic spontaneous urticarial weals with Iowâ€level persistence in uninvolved skin. British Journal of Dermatology, 2014, 171, 505-511.	1.4	93
64	Airway Uric Acid Is a Sensor of Inhaled Protease Allergens and Initiates Type 2 Immune Responses in Respiratory Mucosa. Journal of Immunology, 2014, 192, 4032-4042.	0.4	81
65	Group 2 Innate Lymphoid Cells in the Lung. Advances in Immunology, 2014, 124, 1-16.	1.1	35
66	Enhanced innate type 2 immune response in peripheral blood from patients with asthma. Journal of Allergy and Clinical Immunology, 2014, 134, 671-678.e4.	1.5	340
67	Group 2 innate lymphoid cells and <scp>CD</scp> 4 ⁺ T cells cooperate to mediate type 2 immune response in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1300-1307.	2.7	163
68	IL-33 and Thymic Stromal Lymphopoietin Mediate Immune Pathology in Response to Chronic Airborne Allergen Exposure. Journal of Immunology, 2014, 193, 1549-1559.	0.4	97
69	Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. Journal of Allergy and Clinical Immunology, 2014, 134, 622-633.e9.	1.5	283
70	Biology of Eosinophils. , 2014, , 265-279.		5
71	The Role of Eosinophils in Rhinologic Diseases. , 2013, , 95-108.		Ο
72	Transcription of Interleukin-25 and Extracellular Release of the Protein Is Regulated by Allergen Proteases in Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 741-750.	1.4	95

#	Article	IF	CITATIONS
73	IL-1 Family Cytokines Drive Th2 and Th17 Cells to Innocuous Airborne Antigens. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 989-998.	1.4	30
74	ATP release and Ca ²⁺ signalling by human bronchial epithelial cells following <i>Alternaria</i> aeroallergen exposure. Journal of Physiology, 2013, 591, 4595-4609.	1.3	33
75	Alternaria Inhibits Double-Stranded RNA-Induced Cytokine Production through Toll-Like Receptor 3. International Archives of Allergy and Immunology, 2013, 161, 75-83.	0.9	10
76	Eosinophils: Multifunctional and Distinctive Properties. International Archives of Allergy and Immunology, 2013, 161, 3-9.	0.9	98
77	IL-33–Responsive Lineageâ^'CD25+CD44hi Lymphoid Cells Mediate Innate Type 2 Immunity and Allergic Inflammation in the Lungs. Journal of Immunology, 2012, 188, 1503-1513.	0.4	479
78	Fungi and allergic lower respiratory tract diseases. Journal of Allergy and Clinical Immunology, 2012, 129, 280-291.	1.5	398
79	Asthma outcomes: Biomarkers. Journal of Allergy and Clinical Immunology, 2012, 129, S9-S23.	1.5	334
80	Increased Numbers of Eosinophils, Rather Than Only Etiology, Predict Histologic Changes in Patients With Esophageal Eosinophilia. Clinical Gastroenterology and Hepatology, 2012, 10, 735-741.	2.4	36
81	Dynamic role of epithelium-derived cytokines in asthma. Clinical Immunology, 2012, 143, 222-235.	1.4	127
82	Eosinophils in the Bone Marrow Microenvironment: Effects On Malignant Plasma Cell Biology Blood, 2012, 120, 2917-2917.	0.6	0
83	Human Eosinophil Innate Response to Alternaria Fungus through Protease-Activated Receptor-2. International Archives of Allergy and Immunology, 2011, 155, 123-128.	0.9	24
84	The Danger Signal, Extracellular ATP, Is a Sensor for an Airborne Allergen and Triggers IL-33 Release and Innate Th2-Type Responses. Journal of Immunology, 2011, 186, 4375-4387.	0.4	429
85	Eosinophils: multifaceted biological properties and roles in health and disease. Immunological Reviews, 2011, 242, 161-177.	2.8	260
86	Eosinophil Degranulation Is More Important than Eosinophilia in Identifying Asthma in Chronic Cough. Journal of Asthma, 2011, 48, 994-1000.	0.9	24
87	Lineageâ^'Sca1+c-Kitâ^'CD25+ Cells Are IL-33–Responsive Type 2 Innate Cells in the Mouse Bone Marrow. Journal of Immunology, 2011, 187, 5795-5804.	0.4	56
88	Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut, 2010, 59, 21-30.	6.1	498
89	Marked Deposition of Eosinophil-Derived Neurotoxin in Adult Patients With Eosinophilic Esophagitis. American Journal of Gastroenterology, 2010, 105, 298-307.	0.2	89
90	Increased risk of serious pneumococcal disease in patients with atopic conditions other than asthma. Journal of Allergy and Clinical Immunology, 2010, 125, 217-221.	1.5	59

#	Article	IF	CITATIONS
91	Inflammatory responses of human eosinophils to cockroach are mediated through protease-dependent pathways. Journal of Allergy and Clinical Immunology, 2010, 126, 169-172.e2.	1.5	12
92	Human Eosinophils Recognize Endogenous Danger Signal Crystalline Uric Acid and Produce Proinflammatory Cytokines Mediated by Autocrine ATP. Journal of Immunology, 2010, 184, 6350-6358.	0.4	81
93	Gene Transcription Changes in Asthmatic Chronic Rhinosinusitis with Nasal Polyps and Comparison to Those in Atopic Dermatitis. PLoS ONE, 2010, 5, e11450.	1.1	65
94	Recognition of Fungal Protease Activities Induces Cellular Activation and Eosinophil-Derived Neurotoxin Release in Human Eosinophils. Journal of Immunology, 2009, 183, 6708-6716.	0.4	70
95	Fungal rhinosinusitis. Laryngoscope, 2009, 119, 1809-1818.	1.1	385
96	IL-33–activated dendritic cells induce an atypical TH2-type response. Journal of Allergy and Clinical Immunology, 2009, 123, 1047-1054.	1.5	332
97	Proteases Induce Production of Thymic Stromal Lymphopoietin by Airway Epithelial Cells through Protease-Activated Receptor-2. Journal of Immunology, 2009, 183, 1427-1434.	0.4	312
98	Asthma-Related Environmental Fungus, <i>Alternaria</i> , Activates Dendritic Cells and Produces Potent Th2 Adjuvant Activity. Journal of Immunology, 2009, 182, 2502-2510.	0.4	94
99	Protein Microarray Analysis in Patients With Asthma. Chest, 2009, 135, 295-302.	0.4	39
100	Innate immunomodulatory effects of cereal grains through induction of IL-10. Journal of Allergy and Clinical Immunology, 2008, 121, 172-178.e3.	1.5	18
101	A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. Journal of Allergy and Clinical Immunology, 2008, 121, 1484-1490.	1.5	436
102	Increased risk of serious pneumococcal disease in patients with asthma. Journal of Allergy and Clinical Immunology, 2008, 122, 719-723.	1.5	147
103	Nicotine and oxidative cigarette smoke constituents induce immune-modulatory and pro-inflammatory dendritic cell responses. Molecular Immunology, 2008, 45, 3321-3329.	1.0	92
104	Cigarette Smoke-Induced Oxidative Stress Suppresses Generation of Dendritic Cell IL-12 and IL-23 through ERK-Dependent Pathways. Journal of Immunology, 2008, 181, 1536-1547.	0.4	93
105	Innate Antifungal Immunity of Human Eosinophils Mediated by a β2 Integrin, CD11b. Journal of Immunology, 2008, 181, 2907-2915.	0.4	85
106	CD66b Regulates Adhesion and Activation of Human Eosinophils. Journal of Immunology, 2007, 179, 8454-8462.	0.4	90
107	INTRANASAL EXPOSURE TO STAPHYLOCOCCAL ENTEROTOXIN B ELICITS AN ACUTE SYSTEMIC INFLAMMATORY RESPONSE. Shock, 2006, 25, 647-656.	1.0	51
108	A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 777-784.	2.7	89

#	Article	IF	CITATIONS
109	The Role of Ubiquitous Airborne Fungi in Chronic Rhinosinusitis. Clinical Reviews in Allergy and Immunology, 2006, 30, 187-194.	2.9	39
110	Allergen-Specific In Vitro Cytokine Production in Adult Patients with Eosinophilic Esophagitis. Digestive Diseases and Sciences, 2006, 51, 1934-1941.	1.1	81
111	Nonpathogenic, Environmental Fungi Induce Activation and Degranulation of Human Eosinophils. Journal of Immunology, 2005, 175, 5439-5447.	0.4	151
112	Treatment of chronic rhinosinusitis with intranasal amphotericin B: A randomized, placebo-controlled, double-blind pilot trial. Journal of Allergy and Clinical Immunology, 2005, 115, 125-131.	1.5	209
113	Striking deposition of toxic eosinophil major basic protein in mucus: Implications for chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2005, 116, 362-369.	1.5	121
114	Treatment of asthma with nebulized lidocaine: A randomized, placebo-controlled studyâ~†. Journal of Allergy and Clinical Immunology, 2004, 113, 853-859.	1.5	88
115	Peripheral blood eosinophils from patients with allergic asthma contain increased intracellular eosinophil-derived neurotoxin. Journal of Allergy and Clinical Immunology, 2004, 114, 568-574.	1.5	23
116	The role of protease activation of inflammation in allergic respiratory diseases. Journal of Allergy and Clinical Immunology, 2004, 114, 997-1008.	1.5	331
117	Chronic rhinosinusitis: An enhanced immune response to ubiquitous airborne fungi. Journal of Allergy and Clinical Immunology, 2004, 114, 1369-1375.	1.5	259
118	The Effect of Nasal Polyp Epithelial Cells on Eosinophil Activation. Laryngoscope, 2003, 113, 1374-1377.	1.1	33
119	Features of airway remodeling and eosinophilic inflammation in chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2003, 112, 877-882.	1.5	230
120	Human eosinophils are activated by cysteine proteases and release inflammatory mediators. Journal of Allergy and Clinical Immunology, 2003, 111, 704-713.	1.5	95
121	Eosinophilic-lymphocytic myocarditis after smallpox vaccination. Lancet, The, 2003, 362, 1378-1380.	6.3	82
122	Marked Airway Eosinophilia Prevents Development of Airway Hyper-responsiveness During an Allergic Response in IL-5 Transgenic Mice. Journal of Immunology, 2003, 170, 5756-5763.	0.4	61
123	Platelet-Activating Factor Activates Two Distinct Effector Pathways in Human Eosinophils. Journal of Immunology, 2002, 169, 5252-5259.	0.4	42
124	School Examinations Enhance Airway Inflammation to Antigen Challenge. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1062-1067.	2.5	258
125	Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli. Blood, 2002, 99, 2214-2220.	0.6	148
126	Intranasal antifungal treatment in 51 patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2002, 110, 862-866.	1.5	190

#	Article	IF	CITATIONS
127	Regulation of human eosinophil NADPH oxidase activity: A central role for PKC?. Journal of Cellular Physiology, 2001, 189, 306-315.	2.0	70
128	Bile acids induce eosinophil degranulation by two different mechanisms. Hepatology, 2001, 33, 582-590.	3.6	9
129	Cysteine Protease Secreted by Paragonimus westermani Attenuates Effector Functions of Human Eosinophils Stimulated with Immunoglobulin G. Infection and Immunity, 2001, 69, 1599-1604.	1.0	54
130	Trypsin Induces Activation and Inflammatory Mediator Release from Human Eosinophils Through Protease-Activated Receptor-2. Journal of Immunology, 2001, 167, 6615-6622.	0.4	140
131	Mechanism of topical glucocorticoid treatment of hay fever: IL-5 and eosinophil activation during natural allergen exposure are suppressed, but IL-4, IL-6, and IgE antibody production are unaffected. Journal of Allergy and Clinical Immunology, 2000, 106, 521-529.	1.5	41
132	æ°—ç®jæ"⁻å–~æ•ā«ãŠã⁴ã,‹å¥½é,çƒã®å½¹å‰²ã•ãã®æ´»æ€§åŒ–機構. Nihon Shoni Arerugi Gakkaishi tł 2000, 14, 303-303.	1e Japanese	Journal of Pe
133	Ursodeoxycholic acid inhibits eosinophil degranulation in patients with primary biliary cirrhosis. Hepatology, 1999, 30, 71-78.	3.6	68
134	Reactivity of monoclonal antibodies EG1 and EG2 with eosinophils and their granule proteins. Journal of Leukocyte Biology, 1999, 66, 447-454.	1.5	19
135	Endogenous platelet-activating factor is critically involved in effector functions of eosinophils stimulated with IL-5 or IgG. Journal of Immunology, 1999, 162, 2982-9.	0.4	52
136	Does IgE bind to and activate eosinophils from patients with allergy?. Journal of Immunology, 1999, 162, 6901-11.	0.4	76
137	Granulocyte Macrophage Colony-stimulating Factor Augments ICAM-1 and VCAM-1 Activation of Eosinophil Function. American Journal of Respiratory Cell and Molecular Biology, 1998, 19, 158-166.	1.4	76
138	Ligation of the β2Integrin Triggers Activation and Degranulation of Human Eosinophils. American Journal of Respiratory Cell and Molecular Biology, 1998, 18, 675-686.	1.4	71
139	Localization of eosinophil-derived neurotoxin and eosinophil cationic protein in neutrophilic leukocytes. Journal of Leukocyte Biology, 1998, 63, 715-722.	1.5	117
140	Lidocaine and its analogues inhibit IL-5-mediated survival and activation of human eosinophils. Journal of Immunology, 1998, 160, 4010-7.	0.4	40
141	Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils. Journal of Immunology, 1998, 161, 4340-6.	0.4	60
142	Transmigration of eosinophils through basement membrane components in vitro: synergistic effects of platelet-activating factor and eosinophil-active cytokines American Journal of Respiratory Cell and Molecular Biology, 1997, 16, 455-463.	1.4	67
143	Migration of Eosinophils through Basement Membrane Components <i>In Vitro</i> : Role of Matrix Metalloproteinase-9. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 519-528.	1.4	245
144	Bronchial asthma: Lessons from murine models. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 2101-2102.	3.3	54

#	Article	IF	CITATIONS
145	Production of IL-8 and Release of Eosinophil-Derived Neurotoxin by Normal Peripheral Blood Eosinophils. International Archives of Allergy and Immunology, 1997, 114, 36-39.	0.9	4
146	Eosinophils and IgE Receptors: A Continuing Controversy. Blood, 1997, 89, 3497-3501.	0.6	26
147	Eosinophils and IgE Receptors: A Continuing Controversy. Blood, 1997, 89, 3497-3501.	0.6	Ο
148	Cytokines directly induce degranulation and superoxide production from human eosinophils. Journal of Allergy and Clinical Immunology, 1996, 98, 371-381.	1.5	136
149	Eosinophil recruitment is associated with IL-5, but not with RANTES, twenty–four hours after allergen challenge. Journal of Allergy and Clinical Immunology, 1996, 97, 1272-1278.	1.5	64
150	The eosinophil: A cytokine-producing cell?. Journal of Allergy and Clinical Immunology, 1996, 97, 889-892.	1.5	85
151	Chemokines active on eosinophils: potential roles in allergic inflammation Journal of Experimental Medicine, 1996, 183, 2421-2426.	4.2	101
152	Eosinophils in Allergy: Role in Disease, Degranulation, and Cytokines. International Archives of Allergy and Immunology, 1996, 109, 207-215.	0.9	172
153	Cytokine production at the site of disease in chronic eosinophilic pneumonitis American Journal of Respiratory and Critical Care Medicine, 1996, 153, 1437-1441.	2.5	44
154	Extracellular matrix proteins attenuate activation and degranulation of stimulated eosinophils. Journal of Immunology, 1996, 156, 1174-81.	0.4	27
155	Constitutive production of IL-4 and IL-10 and stimulated production of IL-8 by normal peripheral blood eosinophils. Journal of Immunology, 1996, 156, 4859-66.	0.4	102
156	Allergen-specific IgG1 and IgG3 through Fc gamma RII induce eosinophil degranulation Journal of Clinical Investigation, 1995, 95, 2813-2821.	3.9	104
157	Eosinophil adhesion to vascular cell adhesion molecule-1 activates superoxide anion generation. Journal of Immunology, 1995, 155, 2194-202.	0.4	77
158	A crucial role for beta 2 integrin in the activation of eosinophils stimulated by IgG. Journal of Immunology, 1995, 155, 2631-41.	0.4	55
159	Eosinophil major basic protein induces degranulation and IL-8 production by human eosinophils. Journal of Immunology, 1995, 154, 4749-58.	0.4	61
160	Endotoxin contamination causes neutrophilia following pulmonary allergen challenge American Journal of Respiratory and Critical Care Medicine, 1994, 149, 1471-1475.	2.5	77
161	Ammonium chloride exposure inhibits cytokine-mediated eosinophil survival. Journal of Immunological Methods, 1994, 168, 187-196.	0.6	66
162	CD11b/CD18 (Mac-1) is required for degranulation of human eosinophils induced by human recombinant granulocyte-macrophage colony-stimulating factor and platelet-activating factor. Journal of Immunology, 1994, 152, 5457-67.	0.4	122

#	Article	IF	CITATIONS
163	IL-5 Is the Predominant Eosinophil-active Cytokine in the Antigen-induced Pulmonary Late-phase Reaction. The American Review of Respiratory Disease, 1993, 147, 901-907.	2.9	182
164	Eosinophil granule proteins in peripheral blood granulocytes. Journal of Leukocyte Biology, 1992, 52, 611-618.	1.5	160
165	Release of granule proteins from eosinophils cultured with IL-5. Journal of Immunology, 1992, 149, 629-35.	0.4	82
166	Effect of steroids on immunoglobulin-induced eosinophil degranulation. Journal of Allergy and Clinical Immunology, 1991, 87, 70-77.	1.5	61
167	Granulocyte/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils Journal of Experimental Medicine, 1991, 174, 745-748.	4.2	322
168	Immediate and Late Airway Response of Allergic Rhinitis Patients to Segmental Antigen Challenge: Characterization of Eosinophil and Mast Cell Mediators. The American Review of Respiratory Disease, 1991, 144, 1274-1281.	2.9	291
169	Regulation of Ig-induced eosinophil degranulation by adenosine 3',5'-cyclic monophosphate. Journal of Immunology, 1991, 146, 2712-8.	0.4	81
170	Role of pertussis toxin-sensitive G proteins in stimulus-dependent human eosinophil degranulation. Journal of Immunology, 1991, 147, 3466-73.	0.4	28
171	Glucocorticoids inhibit cytokine-mediated eosinophil survival. Journal of Immunology, 1991, 147, 3490-5.	0.4	176
172	Regulatory effect of cytokines on eosinophil degranulation. Journal of Immunology, 1990, 144, 642-6.	0.4	208