Shunsuke Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5676069/publications.pdf

Version: 2024-02-01

65 1,264 21 papers citations h-index

21 33
index g-index

67 67 all docs citations

67 times ranked 1796 citing authors

#	Article	IF	Citations
1	Molecular Understanding of the Openâ€Circuit Voltage of Polymer:Fullerene Solar Cells. Advanced Energy Materials, 2012, 2, 229-237.	19.5	95
2	Fluorescent Ferroelectrics of Hydrogen-Bonded Pyrene Derivatives. Journal of Physical Chemistry Letters, 2015, 6, 1813-1818.	4.6	77
3	Formation of Methanofullerene Cation in Bulk Heterojunction Polymer Solar Cells Studied by Transient Absorption Spectroscopy. Advanced Functional Materials, 2008, 18, 2555-2562.	14.9	68
4	Role of Interfacial Charge Transfer State in Charge Generation and Recombination in Low-Bandgap Polymer Solar Cell. Journal of Physical Chemistry C, 2012, 116, 14804-14810.	3.1	58
5	Circular Polarized Luminescence of Hydrogen-Bonded Molecular Assemblies of Chiral Pyrene Derivatives. Journal of Physical Chemistry C, 2018, 122, 6323-6331.	3.1	55
6	Microfabricated Ionâ€Selective Transistors with Fast and Superâ€Nernstian Response. Advanced Materials, 2020, 32, e2004790.	21.0	54
7	Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation. Cellulose, 2019, 26, 3671-3684.	4.9	44
8	Ferroelectricity of poly(vinylidene fluoride) homopolymer Langmuir–Blodgett nanofilms. Journal of Materials Chemistry C, 2014, 2, 6727-6731.	5.5	40
9	Superhydrophobic Porous Surfaces: Dissolved Oxygen Sensing. ACS Applied Materials & Amp; Interfaces, 2015, 7, 3468-3472.	8.0	40
10	Site occupancy and luminescence properties of Ca $<$ sub $>$ 3 $<$ 1sub $>$ 1 $<$ 1sub $>$ 3 $<$ 1sub $>$ 4 $<$ 1sub $>$ 3 $<$ 1sub $>$ 4 $<$ 1sub $>$ 3 $<$ 1sub $>$ 3 $<$ 1sub $>$ 4 $<$ 1sub $>$ 3 $<$ 1sub $>$ 4 $<$ 1sub $>$ 5 $<$ 1sub $>$ 5 $<$ 1sub $>$ 6 $<$ 1sub $>$ 6 $<$ 1sub $>$ 6 $<$ 1sub $>$ 6 $<$ 1sub $>$ 7sub $>$ 7sub $>$ 8sub $>$ 8sub $>$ 9sub $>$ 9s	,Mns.sup>2	<u>?</u> +< 3s up>
11	Dibenzoarsepins: Planarization of 8Ï€â€Electron System in the Lowest Singlet Excited State. Angewandte Chemie - International Edition, 2019, 58, 11686-11690.	13.8	38
12	Superhydrophobic surfaces with fluorinated cellulose nanofiber assemblies for oil–water separation. RSC Advances, 2017, 7, 37168-37174.	3.6	35
13	Charge Generation and Recombination in Fullerene-Attached Poly(3-hexylthiophene)-Based Diblock Copolymer Films. Journal of Physical Chemistry C, 2014, 118, 10584-10589.	3.1	32
14	Controlling the Neuromorphic Behavior of Organic Electrochemical Transistors by Blending Mixed and Ion Conductors. ACS Applied Electronic Materials, 2020, 2, 2224-2228.	4.3	32
15		3.9	30
	and Ion Conductors. ACS Applied Electronic Materials, 2020, 2, 2224-2228. Facile synthesis of cyclosiloxane-based polymers for hybrid film formation. Polymer Chemistry, 2015,		
15	and Ion Conductors. ACS Applied Electronic Materials, 2020, 2, 2224-2228. Facile synthesis of cyclosiloxane-based polymers for hybrid film formation. Polymer Chemistry, 2015, 6, 2695-2706. Nanophase Separation of Poly(<i>N</i> -alkyl acrylamides): The Dependence of the Formation of	3.9	30

#	Article	IF	CITATIONS
19	Effect of alkyl groups on emission properties of aggregation induced emission active N-alkyl arylaminomaleimide dyes. RSC Advances, 2015, 5, 94344-94350.	3.6	24
20	Electron-donor function of methanofullerenes in donor–acceptor bulk heterojunction systems. Chemical Communications, 2014, 50, 4123-4125.	4.1	22
21	Multimodal underwater adsorption of oxide nanoparticles on catechol-based polymer nanosheets. Nanoscale, 2016, 8, 5912-5919.	5.6	22
22	Layer-by-Layer Growth Control of Metal–Organic Framework Thin Films Assembled on Polymer Films. ACS Applied Materials & Diterfaces, 2020, 12, 50784-50792.	8.0	22
23	Solvent-dependent properties of poly(vinylidene fluoride) monolayers at the air–water interface. Soft Matter, 2015, 11, 1962-1972.	2.7	21
24	As-Heteropentacenes: An Experimental and Computational Study on a Novel Class of Heteroacenes. Organic Letters, 2018, 20, 5952-5955.	4.6	21
25	Efficient Charge Generation and Collection in Amorphous Polymer-Based Solar Cells. Journal of Physical Chemistry C, 2013, 117, 11514-11521.	3.1	19
26	Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(<i>N</i> -dodecylacrylamide- <i>co</i> -acrylic acid) Copolymer Multilayer Nanosheet Films. Langmuir, 2017, 33, 12897-12902.	3.5	19
27	Regioselective Synthesis of Eight-Armed Cyclosiloxane Amphiphile for Functional 2D and 3D Assembly Motifs. ACS Applied Materials & Damp; Interfaces, 2017, 9, 28144-28150.	8.0	19
28	Molecular-weight dependence of the formation of highly ordered lamellar structures of poly(<i>N</i> -dodecyl acrylamide) by humid annealing. Polymer Chemistry, 2019, 10, 835-842.	3.9	17
29	Highly oriented poly(vinylidene fluoride-co-trifluoroethylene) ultrathin films with improved ferroelectricity. RSC Advances, 2016, 6, 32007-32012.	3.6	15
30	Resistive switching of organic–inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO ₂ films. Nanotechnology, 2018, 29, 26LT02.	2.6	15
31	Cellulose Nanofiber Nanosheet Multilayers by the Langmuir–Blodgett Technique. Langmuir, 2019, 35, 8052-8059.	3.5	14
32	Flexible SiO ₂ nanofilms assembled on poly(ethylene terephthalate) substrates through a room temperature fabrication process for nanoscale integration. Journal of Materials Chemistry C, 2015, 3, 1286-1293.	5.5	13
33	A versatile platform of catechol-functionalized polysiloxanes for hybrid nanoassembly and in situ surface enhanced Raman scattering applications. Journal of Materials Chemistry C, 2016, 4, 8903-8910.	5.5	13
34	Resistive non-volatile memories fabricated with poly(vinylidene fluoride)/poly(thiophene) blend nanosheets. RSC Advances, 2018, 8, 7963-7968.	3.6	13
35	High-Density and Monolayer-Level Integration of π-Conjugated Units: Amphiphilic Carbazole Homopolymer Langmuir–Blodgett Films. Langmuir, 2018, 34, 10491-10497.	3.5	13
36	Alkylamide-substituted tetraphenylethylene: three modes of fluorescence based on a hydrogen-bonded excimer. Organic and Biomolecular Chemistry, 2016, 14, 8922-8926.	2.8	12

#	Article	IF	CITATIONS
37	Synthesis and Porous SiO ₂ Nanofilm Formation of the Silsesquioxane-Containing Amphiphilic Block Copolymer. Langmuir, 2018, 34, 8007-8014.	3.5	12
38	Biomimetic Polyelectrolytes Based on Polymer Nanosheet Films and Their Proton Conduction Mechanism. Langmuir, 2019, 35, 3302-3307.	3.5	12
39	Cyclosiloxane polymer bearing dynamic boronic acid: synthesis and bottom-up nanocoating. Polymer Chemistry, 2019, 10, 5228-5235.	3.9	11
40	Correlation between Transient Response and Neuromorphic Behavior in Organic Electrochemical Transistors. Advanced Electronic Materials, 2022, 8, .	5.1	11
41	Ce ⁴⁺ -Based Compounds Capable of Photoluminescence by Charge Transfer Excitation under Near-Ultraviolet–Visible Light. Inorganic Chemistry, 2018, 57, 14524-14531.	4.0	10
42	Formation Mechanism of Fullerene Cation in Bulk Heterojunction Polymer Solar Cells. Advanced Functional Materials, 2012, 22, 3075-3082.	14.9	9
43	Self Formed Anisotropic Proton Conductive Polymer Film by Nanophase Separation. Journal of the Electrochemical Society, 2019, 166, B3218-B3222.	2.9	8
44	Amphiphilic acrylamide block copolymer: RAFT block copolymerization and monolayer behaviour. RSC Advances, 2017, 7, 44954-44960.	3.6	7
45	Asymmetric Ferroelectric Switching Based on an Al/PVDF Langmuir-Blodgett Nanofilm/PEDOT:PSS/Al Device. Molecular Crystals and Liquid Crystals, 2015, 618, 89-94.	0.9	6
46	Synthesis and Properties of Poly(phenyleneethynylene)s Bearing Perylene Moieties at the Side Chains. Chemistry Letters, 2014, 43, 1622-1624.	1.3	5
47	Nanoscale deposition of metal–organic framework films on polymer nanosheets. RSC Advances, 2016, 6, 74349-74353.	3.6	4
48	Observation of self-polarization in BSA protected Au20 clusters. Nanotechnology, 2017, 28, 445704.	2.6	4
49	Fully Conjugated Porphyrin Glass: Collective Light-Harvesting Antenna for Near-Infrared Fluorescence beyond 1 μm. ACS Omega, 2018, 3, 4466-4474.	3.5	4
50	Formation of Perpendicularly Aligned Sub-10 nm Nanocylinders in Poly(<i>N</i> -dodecylacrylamide- <i>b</i> -ethylene glycol) Block Copolymer Films by Hierarchical Phase Separation. Macromolecules, 2020, 53, 9601-9610.	4.8	4
51	Synthesis of Ba $1\hat{a}$ °Sr YSi2O5N and discussion based on structure analysis and DFT calculation. Journal of Solid State Chemistry, 2019, 276, 266-271.	2.9	3
52	Development of Interfacial Nanoassembly Techniques in Functional Nanomaterials. Polymer Journal, 2019, 51, 731-738.	2.7	3
53	Titania Nanofilms from Titanium Complex-Containing Polymer Langmuir–Blodgett Films. Langmuir, 2020, 36, 10371-10378.	3 . 5	3
54	Surface wettability of amphiphilic fluorinated polymer thin films. Polymer Bulletin, 2016, 73, 2409-2415.	3.3	2

#	Article	IF	CITATIONS
55	Preparation, Electronic and Liquid Crystalline Properties of Electron-Accepting Azaacene Derivatives. ACS Omega, 2018, 3, 13694-13703.	3.5	2
56	Controlled Ion Permeability of Ultrathin Nanoporous SiO ₂ Films from Silsesquioxane-Containing Polymer Nanosheets. ACS Applied Nano Materials, 2020, 3, 7454-7461.	5.0	2
57	pH-Responsive Ultrathin Nanoporous SiO ₂ Films for Selective Ion Permeation. Langmuir, 2021, 37, 5627-5634.	3.5	2
58	Flexible ultraviolet detector with robust ZnO nanoparticle nanoassemblies on catecholâ€functionalized polysiloxane nanofilms. Journal of Applied Polymer Science, 2021, 138, 50947.	2.6	2
59	Angle-resolved X-ray photoelectron spectroscopy study of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock Physics, 2016, 55, 03DD11.	10 Tf 50 5	587 Td (fluori 1
60	Catechol-Functionalized Polysiloxane Nanocoating for Surface Enhanced Raman Scattering on a Grating Surface. International Journal of the Society of Materials Engineering for Resources, 2018, 23, 84-87.	0.1	1
61	Synthesis and self-assembly nanostructures of pyrene-containing amphiphilic fluorinated copolymers and their oxygen sensing application. Molecular Crystals and Liquid Crystals, 2020, 704, 81-88.	0.9	1
62	Amphiphilic Fluorinated Polymer Nanoparticle Film Formation and Dissolved Oxygen Sensing Application. Journal of Physics: Conference Series, 2016, 704, 012009.	0.4	0
63	Luminescence Properties of Anthracene Chromophores in Cyclosiloxane-Based Hybrid Polymer Films. Rapid Communication in Photoscience, 2015, 4, 16-18.	0.1	0
64	Two-Dimensional Proton Conduction in Biomimetic Polymer Electrolytes Prepared the Polymer Nanosheet Multilayer Film. ECS Meeting Abstracts, 2018, , .	0.0	0
65	Semicrystalline Structural Correlations of Conductivity in Conjugated Polymer Thin Films Surface-Doped by the Vapor Phase Method. ACS Applied Electronic Materials, 0, , .	4.3	0