
Jurgen Engelberth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5675567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1781-1785.	7.1	745
2	Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10552-10557.	7.1	311
3	The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant Journal, 2004, 39, 790-808.	5.7	247
4	Differential Induction of Plant Volatile Biosynthesis in the Lima Bean by Early and Late Intermediates of the Octadecanoid-Signaling Pathway. Plant Physiology, 1999, 121, 153-162.	4.8	242
5	Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 653-657.	7.1	229
6	lon Channel-Forming Alamethicin Is a Potent Elicitor of Volatile Biosynthesis and Tendril Coiling. Cross Talk between Jasmonate and Salicylate Signaling in Lima Bean. Plant Physiology, 2001, 125, 369-377.	4.8	224
7	Disruption of <i>OPR7</i> and <i>OPR8</i> Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense. Plant Cell, 2012, 24, 1420-1436.	6.6	222
8	The maize lipoxygenase, <i>Zm<scp>LOX</scp>10</i> , mediates green leaf volatile, jasmonate and herbivoreâ€induced plant volatile production for defense against insect attack. Plant Journal, 2013, 74, 59-73.	5.7	217
9	Maize 9-Lipoxygenase ZmLOX3 Controls Development, Root-Specific Expression of Defense Genes, and Resistance to Root-Knot Nematodes. Molecular Plant-Microbe Interactions, 2008, 21, 98-109.	2.6	157
10	Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Analytical Biochemistry, 2003, 312, 242-250.	2.4	138
11	Nitrogen Deficiency Increases Volicitin-Induced Volatile Emission, Jasmonic Acid Accumulation, and Ethylene Sensitivity in Maize. Plant Physiology, 2003, 133, 295-306.	4.8	128
12	Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta, 2003, 217, 767-775.	3.2	124
13	Plants on Constant Alert: Elevated Levels of Jasmonic Acid and Jasmonate-Induced Transcripts in Caterpillar-Resistant Maize. Journal of Chemical Ecology, 2010, 36, 179-191.	1.8	112
14	Insect Elicitors and Exposure to Green Leafy Volatiles Differentially Upregulate Major Octadecanoids and Transcripts of 12-Oxo Phytodienoic Acid Reductases in Zea mays. Molecular Plant-Microbe Interactions, 2007, 20, 707-716.	2.6	111
15	Early Transcriptome Analyses of Z-3-Hexenol-Treated Zea mays Revealed Distinct Transcriptional Networks and Anti-Herbivore Defense Potential of Green Leaf Volatiles. PLoS ONE, 2013, 8, e77465.	2.5	70
16	Green leaf volatiles protect maize (<scp><i>Zea mays</i></scp>) seedlings against damage from cold stress. Plant, Cell and Environment, 2018, 41, 1673-1682.	5.7	56
17	Channel-Forming Peptaibols Are Potent Elicitors of Plant Secondary Metabolism and Tendril Coiling. Angewandte Chemie - International Edition, 2000, 39, 1860-1862.	13.8	44
18	Transcriptional Analysis of Distant Signaling Induced by Insect Elicitors and Mechanical Wounding in Zea mays. PLoS ONE, 2012, 7, e34855.	2.5	34

JURGEN ENGELBERTH

#	Article	IF	CITATIONS
19	Functional anatomy of the mechanoreceptor cells in tendrils of Bryonia dioica Jacq Planta, 1995, 196, 539.	3.2	30
20	The Costs of Green Leaf Volatile-Induced Defense Priming: Temporal Diversity in Growth Responses to Mechanical Wounding and Insect Herbivory. Plants, 2019, 8, 23.	3.5	28
21	Low Concentrations of Salicylic Acid Stimulate Insect Elicitor Responses in Zea mays Seedlings. Journal of Chemical Ecology, 2011, 37, 263-266.	1.8	27
22	Mechanosensing and signaltransduction in tendrils. Advances in Space Research, 2003, 32, 1611-1619.	2.6	25
23	Touch―and Methyl Jasmonateâ€induced Lignification in Tendrils of <i>Bryonia dioica</i> Jacq Botanica Acta, 1994, 107, 24-29.	1.6	24
24	Phytohormones Mediate Volatile Emissions During The Interaction Of Compatible and Incompatible Pathogens: The Role Of Ethylene In Pseudomonas syringae Infected Tobacco. Journal of Chemical Ecology, 2005, 31, 439-459.	1.8	21
25	Herbivorous Caterpillars Can Utilize Three Mechanisms to Alter Green Leaf Volatile Emission. Environmental Entomology, 2019, 48, 419-425.	1.4	21
26	Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling. Plants, 2016, 5, 5.	3.5	20
27	Variability in the Capacity to Produce Damage-Induced Aldehyde Green Leaf Volatiles among Different Plant Species Provides Novel Insights into Biosynthetic Diversity. Plants, 2020, 9, 213.	3.5	20
28	Selective inhibition of jasmonic acid accumulation by a small α, β-unsaturated carbonyl and phenidone reveals different modes of octadecanoid signalling activation in response to insect elicitors and green leaf volatiles in Zea mays. BMC Research Notes, 2011, 4, 377.	1.4	15
29	In-Cold Exposure to Z-3-Hexenal Provides Protection Against Ongoing Cold Stress in Zea mays. Plants, 2019, 8, 165.	3.5	12
30	Herbivorous Caterpillars and the Green Leaf Volatile (GLV) Quandary. Journal of Chemical Ecology, 2022, 48, 337-345.	1.8	11
31	Interaction between polygalacturonase-inhibiting protein and jasmonic acid during defense activation in tomato against Botrytis cinerea. European Journal of Plant Pathology, 2010, 128, 423-428.	1.7	9
32	Monitoring Plant Hormones During Stress Responses. Journal of Visualized Experiments, 2009, , .	0.3	7
33	Defense priming by non-jasmonate producing fatty acids in maize (<i>Zea mays</i>). Plant Signaling and Behavior, 2016, 11, e1243635.	2.4	6
34	Primed to grow: a new role for green leaf volatiles in plant stress responses. Plant Signaling and Behavior, 2020, 15, 1701240.	2.4	6
35	Green Leaf Volatiles: Airborne Signals That Protect against Biotic and Abiotic Stresses. Biology and Life Sciences Forum, 2020, 4, .	0.6	1
36	Developmental Stages Affect the Capacity to Produce Aldehyde Green Leaf Volatiles in Zea mays and Vigna radiata. Plants, 2022, 11, 526.	3.5	1