Barbara Serafini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5675523/publications.pdf

Version: 2024-02-01

49

all docs

49 8,070 36
papers citations h-index

49

docs citations

h-index g-index

49 6423
times ranked citing authors

47

#	Article	IF	CITATIONS
1	Connecting Immune Cell Infiltration to the Multitasking Microglia Response and TNF Receptor 2 Induction in the Multiple Sclerosis Brain. Frontiers in Cellular Neuroscience, 2020, 14, 190.	1.8	10
2	Megalencephalic Leukoencephalopathy with Subcortical Cysts Protein-1 (MLC1) Counteracts Astrocyte Activation in Response to Inflammatory Signals. Molecular Neurobiology, 2019, 56, 8237-8254.	1.9	19
3	Epstein-Barr Virus-Specific CD8 T Cells Selectively Infiltrate the Brain in Multiple Sclerosis and Interact Locally with Virus-Infected Cells: Clue for a Virus-Driven Immunopathological Mechanism. Journal of Virology, 2019, 93, .	1.5	67
4	Epstein-Barr virus-associated immune reconstitution inflammatory syndrome as possible cause of fulminant multiple sclerosis relapse after natalizumab interruption. Journal of Neuroimmunology, 2018, 319, 9-12.	1.1	21
5	Transcriptional profile and Epstein-Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. Journal of Neuroinflammation, 2018, 15, 18.	3.1	60
6	Massive intracerebral Epstein-Barr virus reactivation in lethal multiple sclerosis relapse after natalizumab withdrawal. Journal of Neuroimmunology, 2017, 307, 14-17.	1.1	40
7	RORÎ ³ t Expression and Lymphoid Neogenesis in the Brain of Patients with Secondary Progressive Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2016, 75, 877-888.	0.9	31
8	Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology, 2015, 84, 1362-1368.	1.5	44
9	Epstein-Barr Virus in the Central Nervous System and Cervical Lymph Node of a Patient With Primary Progressive Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2014, 73, 729-731.	0.9	20
10	Epstein–Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2013, 72, 1559-1568.	0.5	100
11	Radioactive in situ hybridization for Epstein–Barr virus–encoded small RNA supports presence of Epstein–Barr virus in the multiple sclerosis brain. Brain, 2013, 136, e233-e233.	3.7	40
12	Increased CD8+ T Cell Response to Epstein-Barr Virus Lytic Antigens in the Active Phase of Multiple Sclerosis. PLoS Pathogens, 2013, 9, e1003220.	2.1	132
13	B-Cell Enrichment and Epstein-Barr Virus Infection in Inflammatory Cortical Lesions in Secondary Progressive Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2013, 72, 29-41.	0.9	98
14	Epsteinâ€barr virus in myasthenia gravis thymus: A matter of debate. Annals of Neurology, 2011, 70, 519-519.	2.8	9
15	Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain, 2011, 134, 2755-2771.	3.7	685
16	CD161highCD8+T cells bear pathogenetic potential in multiple sclerosis. Brain, 2011, 134, 542-554.	3.7	211
17	Epsteinâ€Barr virus persistence and reactivation in myasthenia gravis thymus. Annals of Neurology, 2010, 67, 726-738.	2.8	103
18	Epstein-Barr Virus Latent Infection and BAFF Expression in B Cells in the Multiple Sclerosis Brain: Implications for Viral Persistence and Intrathecal B-Cell Activation. Journal of Neuropathology and Experimental Neurology, 2010, 69, 677-693.	0.9	135

#	Article	IF	Citations
19	MLC1 trafficking and membrane expression in astrocytes: Role of caveolin-1 and phosphorylation. Neurobiology of Disease, 2010, 37, 581-595.	2.1	30
20	A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Annals of Neurology, 2010, 68, 477-493.	2.8	588
21	Detection of Epstein–Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain, 2010, 133, e157-e157.	3.7	66
22	B cells and multiple sclerosis. Lancet Neurology, The, 2008, 7, 852-858.	4.9	378
23	Lymphoid chemokines in chronic neuroinflammation. Journal of Neuroimmunology, 2008, 198, 106-112.	1.1	55
24	Biochemical characterization of MLC1 protein in astrocytes and its association with the dystrophin–glycoprotein complex. Molecular and Cellular Neurosciences, 2008, 37, 480-493.	1.0	38
25	Expression of TWEAK and Its Receptor Fn14 in the Multiple Sclerosis Brain: Implications for Inflammatory Tissue Injury. Journal of Neuropathology and Experimental Neurology, 2008, 67, 1137-1148.	0.9	46
26	Plasmacytoid Dendritic Cells in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2008, 67, 388-401.	0.9	110
27	Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. Journal of Experimental Medicine, 2007, 204, 2899-2912.	4.2	630
28	Dendritic Cells in Multiple Sclerosis Lesions: Maturation Stage, Myelin Uptake, and Interaction With Proliferating T Cells. Journal of Neuropathology and Experimental Neurology, 2006, 65, 124-141.	0.9	185
29	Suppression of established experimental autoimmune encephalomyelitis and formation of meningeal lymphoid follicles by lymphotoxin \hat{l}^2 receptor-lg fusion protein. Journal of Neuroimmunology, 2006, 179, 76-86.	1.1	68
30	Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain, 2006, 130, 1089-1104.	3.7	1,142
31	Astrocytes Produce Dendritic Cell-Attracting Chemokines In Vitro and in Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 2005, 64, 706-715.	0.9	149
32	B-cell differentiation in the CNS of patients with multiple sclerosis. Autoimmunity Reviews, 2005, 4, 549-554.	2.5	54
33	Migration of dendritic cells into the brain in a mouse model of prion disease. Journal of Neuroimmunology, 2005, 165, 114-120.	1.1	39
34	BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. Journal of Experimental Medicine, 2005, 201, 195-200.	4.2	441
35	Characterization and Recruitment of Plasmacytoid Dendritic Cells in Synovial Fluid and Tissue of Patients with Chronic Inflammatory Arthritis. Journal of Immunology, 2004, 173, 2815-2824.	0.4	135
36	Detection of Ectopic Bâ€eell Follicles with Germinal Centers in the Meninges of Patients with Secondary Progressive Multiple Sclerosis. Brain Pathology, 2004, 14, 164-174.	2.1	1,019

#	Article	IF	CITATIONS
37	Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2004, 148, 11-23.	1.1	286
38	Astrocytes are the major intracerebral source of macrophage inflammatory protein-3?/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia, 2003, 41, 290-300.	2.5	105
39	Lymphoid Chemokines CCL19 and CCL21 are Expressed in the Central Nervous System During Experimental Autoimmune Encephalomyelitis: Implications for the Maintenance of Chronic Neuroinflammation. Brain Pathology, 2003, 13, 38-51.	2.1	132
40	Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. Journal of Neuroimmunology, 2002, 130, 10-21.	1.1	112
41	Intracerebral regulation of immune responses. Annals of Medicine, 2001, 33, 510-515.	1.5	40
42	Dendritic cells in the central nervous system. , 2001, , 371-cp1.		2
43	Glia-T cell dialogue. Journal of Neuroimmunology, 2000, 107, 111-117.	1.1	84
44	Short-lived immunization site inflammation in self-limited active experimental allergic encephalomyelitis. International Immunology, 2000, 12, 711-719.	1.8	17
45	Intracerebral Recruitment and Maturation of Dendritic Cells in the Onset and Progression of Experimental Autoimmune Encephalomyelitis. American Journal of Pathology, 2000, 157, 1991-2002.	1.9	234
46	?Tissue? transglutaminase release from apoptotic cells into extracellular matrix during human liver fibrogenesis., 1999, 189, 92-98.		25
47	Lysosomal involvement in the removal of clofibrate-induced rat liver peroxisomes. A biochemical and morphological analysis. Biology of the Cell, 1998, 90, 229-237.	0.7	5
48	Morphometric analysis of liver and kidney peroxisomes in lactating rats and their pups after treatment with the peroxisomal proliferator di-(2-ethylexyl)phthalate. Biology of the Cell, 1995, 85, 167-176.	0.7	14
49	Differentiation of kidney cortex peroxisomes in fetal and newborn rats. Biology of the Cell, 1994, 82, 185-193.	0.7	16