John Roque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5674933/publications.pdf Version: 2024-02-01

IOHN ROOLE

#	Article	IF	CITATIONS
1	In Vivo Models for Studying Interstitial Photodynamic Therapy of Locally Advanced Cancer. Methods in Molecular Biology, 2022, 2451, 151-162.	0.4	1
2	An Optical Surface Applicator for Intraoperative Photodynamic Therapy. Lasers in Surgery and Medicine, 2020, 52, 523-529.	1.1	5
3	TLD1433-Mediated Photodynamic Therapy with an Optical Surface Applicator in the Treatment of Lung Cancer Cells In Vitro. Pharmaceuticals, 2020, 13, 137.	1.7	23
4	Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chemical Reviews, 2019, 119, 797-828.	23.0	899
5	Photodynamic therapy does not induce cyclobutane pyrimidine dimers in the presence of melanin. Photodiagnosis and Photodynamic Therapy, 2018, 22, 241-244.	1.3	7
6	Irradiance controls photodynamic efficacy and tissue heating in experimental tumours: implication for interstitial PDT of locally advanced cancer. British Journal of Cancer, 2018, 119, 1191-1199.	2.9	33
7	Surface markers for guiding cylindrical diffuser fiber insertion in interstitial photodynamic therapy of head and neck cancer. Lasers in Surgery and Medicine, 2017, 49, 599-608.	1.1	18
8	Interstitial Photodynamic Therapy—A Focused Review. Cancers, 2017, 9, 12.	1.7	140
9	Endobronchial ultrasound—guidance for interstitial photodynamic therapy of locally advanced lung cancer—a new interventional concept. Journal of Thoracic Disease, 2017, 9, 2613-2618.	0.6	14
10	Photodynamic therapy with 3â€(1′â€hexyloxyethyl) pyropheophorbideâ€a for earlyâ€stage cancer of the laryr Phase Ib study. Head and Neck, 2016, 38, E377-83.	^{1x:} 0.9	43
11	A new finite element approach for near realâ€ŧime simulation of light propagation in locally advanced head and neck tumors. Lasers in Surgery and Medicine, 2015, 47, 60-67.	1.1	38
12	Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease. Cancer Immunology, Immunotherapy, 2015, 64, 287-297.	2.0	89
13	Image-guided interstitial photodynamic therapy for squamous cell carcinomas: Preclinical investigation. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2015, 27, 159-165.	0.2	7
14	A Prospective Study of Pain Control by a 2-Step Irradiance Schedule During Topical Photodynamic Therapy of Nonmelanoma Skin Cancer. Dermatologic Surgery, 2014, 40, 1390-1394.	0.4	16
15	Photodynamic Therapy with 3-(1′-Hexyloxyethyl) Pyropheophorbide <i>a</i> for Cancer of the Oral Cavity. Clinical Cancer Research, 2013, 19, 6605-6613.	3.2	70
16	Toll-like Receptor 5 Agonist Protects Mice From Dermatitis and Oral Mucositis Caused by Local Radiation: Implications for Head-and-Neck Cancer Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2012, 83, 228-234.	0.4	104
17	Aminolevulinic Acidâ€Photodynamic Therapy Combined with Topically Applied Vascular Disrupting Agent Vadimezan Leads to Enhanced Antitumor Responses. Photochemistry and Photobiology, 2011, 87, 910-919.	1.3	9
18	Potentiation of ALA-PDT antitumor activity in mice using topical DMXAA. Proceedings of SPIE, 2009, , .	0.8	1

John Roque

#	Article	IF	CITATIONS
19	The Vascular Disrupting Agent 5,6â€Dimethylxanthenoneâ€4â€Acetic Acid Improves the Antitumor Efficacy and Shortens Treatment Time Associated with Photochlorâ€sensitized Photodynamic Therapy <i>In Vivo</i> . Photochemistry and Photobiology, 2009, 85, 50-56.	1.3	21
20	Conjugation of 2-(1′-Hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) to Carbohydrates Changes its Subcellular Distribution and Enhances Photodynamic Activity in Vivo. Journal of Medicinal Chemistry, 2009, 52, 4306-4318.	2.9	87
21	Assessment of the Early Effects of 5,6-Dimethylxanthenone-4-Acetic Acid Using Macromolecular Contrast Media–Enhanced Magnetic Resonance Imaging: Ectopic Versus Orthotopic Tumors. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1198-1207.	0.4	19
22	Light Delivery over Extended Time Periods Enhances the Effectiveness of Photodynamic Therapy. Clinical Cancer Research, 2008, 14, 2796-2805.	3.2	66
23	Visualizing the Acute Effects of Vascular-Targeted Therapy In Vivo Using Intravital Microscopy and Magnetic Resonance Imaging: Correlation with Endothelial Apoptosis, Cytokine Induction, and Treatment Outcome. Neoplasia, 2007, 9, 128-135.	2.3	40
24	Purpurinimide Carbohydrate Conjugates:  Effect of the Position of the Carbohydrate Moiety in Photosensitizing Efficacy. Molecular Pharmaceutics, 2007, 4, 448-464.	2.3	63
25	Activity of the Vascular-Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid against Human Head and Neck Carcinoma Xenografts. Neoplasia, 2006, 8, 534-542.	2.3	31
26	Mild skin photosensitivity in cancer patients following injection of Photochlor (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a; HPPH) for photodynamic therapy. Cancer Chemotherapy and Pharmacology, 2006, 57, 40-45.	1.1	100
27	Clinical Pharmacokinetics of the PDT Photosensitizers Porfimer Sodium (Photofrin), 2-[1-Hexyloxyethyl]-2-Devinyl Pyropheophorbide-a (Photochlor) and 5-ALA-Induced Protoporphyrin IX. Lasers in Surgery and Medicine, 2006, 38, 439-444.	1.1	81
28	Endobronchial photodynamic therapy for lung cancer. Lasers in Surgery and Medicine, 2006, 38, 364-370.	1.1	87
29	A dose ranging study of photodynamic therapy with porfimer sodium (Photofrin®) for treatment of basal cell carcinoma. Lasers in Surgery and Medicine, 2006, 38, 417-426.	1.1	46
30	Treatment of Diffuse Basal Cell Carcinomas and Basaloid Follicular Hamartomas in Nevoid Basal Cell Carcinoma Syndrome by Wide-Area 5-Aminolevulinic Acid Photodynamic Therapy. Archives of Dermatology, 2005, 141, 60-7.	1.7	90
31	Tumor Vascular Response to Photodynamic Therapy and the Antivascular Agent 5,6-Dimethylxanthenone-4-Acetic Acid: Implications for Combination Therapy. Clinical Cancer Research, 2005, 11, 4241-4250.	3.2	60
32	Bacteriopurpurinimides:  Highly Stable and Potent Photosensitizers for Photodynamic Therapy. Journal of Medicinal Chemistry, 2002, 45, 255-258.	2.9	77
33	A Beam-splitting Device for Use with Fiber-coupled Laser Light Sources for Photodynamic Therapy¶. Photochemistry and Photobiology, 2002, 76, 683-685.	1.3	1
34	Synthesis, Photophysical Properties, Tumor Uptake, and Preliminary in Vivo Photosensitizing Efficacy of a Homologous Series of 3-(1â€~-Alkyloxy)ethyl-3-devinylpurpurin-18-N-alkylimides with Variable Lipophilicityâ€. Journal of Medicinal Chemistry, 2001, 44, 1540-1559.	2.9	194
35	Design and construction of a light-delivery system for photodynamic therapy. Medical Physics, 1999, 26, 1552-1558.	1.6	10
36	pHâ€Dependent Chalcogenopyrylium Dyes as Potential Sensitizers for Photodynamic Therapy: Selective Retention in Tumors by Exploiting pH Differences between Tumor and Normal Tissue. Photochemistry and Photobiology, 1999, 70, 630-636.	1.3	35

John Roque

#	Article	IF	CITATIONS
37	Subcellular Localization Patterns and Their Relationship to Photodynamic Activity of Pyropheophorbideâ€ <i>a</i> Derivatives. Photochemistry and Photobiology, 1999, 70, 789-797.	1.3	123
38	Photofrin photodynamic therapy for treatment of AIDS-related cutaneous Kaposi's sarcoma. Aids, 1999, 13, 1697-1704.	1.0	40
39	Correlation between Site II-Specific Human Serum Albumin (HSA) Binding Affinity and Murine in vivo Photosensitizing Efficacy of Some Photofrin Components. Photochemistry and Photobiology, 1997, 66, 224-228.	1.3	55
40	An Assay for the Quantitation of Photofrin in Tissues and Fluids. Photochemistry and Photobiology, 1997, 66, 237-244.	1.3	34
41	Alkyl Ether Analogs of Chlorophyllâ€ <i>a</i> Derivatives: Part 1. Synthesis, Photophysical Properties and Photodynamic Efficacy. Photochemistry and Photobiology, 1996, 64, 194-204.	1.3	170
42	PHOTOSENSITIZATION OF MURINE TUMOR, VASCULATURE and SKIN BY 5-AMINOLEVULINIC ACID-INDUCED PORPHYRIN. Photochemistry and Photobiology, 1995, 62, 780-789.	1.3	77
43	THE VALIDATION OF A NEW VASCULAR DAMAGE ASSAY FOR PHOTODYNAMIC THERAPY AGENTS. Photochemistry and Photobiology, 1995, 62, 896-905.	1.3	23
44	Potentiation of photodynamic therapy in mice with recombinant human tumor necrosis factors-α. Journal of Photochemistry and Photobiology B: Biology, 1991, 8, 203-210.	1.7	53
45	CHLORIN AND PORPHYRIN DERIVATIVES AS POTENTIAL PHOTOSENSITIZERS IN PHOTODYNAMIC THERAPY. Photochemistry and Photobiology, 1991, 53, 65-72.	1.3	175
46	THE TIME COURSE OF CUTANEOUS PORPHYRIN PHOTOSENSITIZATION IN THE MURINE EAR. Photochemistry and Photobiology, 1989, 49, 369-372.	1.3	37
47	DISTRIBUTION AND ELIMINATION OF PHOTOFRIN II IN MICE. Photochemistry and Photobiology, 1989, 50, 221-228.	1.3	192
48	Protection of murine foot tissue and transplantable tumor against Photofrin-II-mediated photodynamic sensitization with WR-2721. Journal of Photochemistry and Photobiology B: Biology, 1989, 4, 219-225.	1.7	11
49	CARBON-14 LABELING AND BIOLOGICAL ACTIVITY OF THE TUMOR-LOCALIZING DERIVATIVE OF HEMATOPORPHYRIN. Photochemistry and Photobiology, 1988, 48, 445-449.	1.3	24
50	Haematoporphyrin Derivative Photosensitization and γ-radiation Damage Interaction in Chinese Hamster Ovary Fibroblasts. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1986, 50, 659-664.	1.0	25
51	Distribution, retention, and phototoxicity of hematoporphyrin derivative in a rat glioma. Journal of Neurosurgery, 1986, 64, 768-774.	0.9	55
52	GIANT CELL FORMATION IN BLADDER TUMOR CELLS FOLLOWING HEMATOPORPHYRIN DERIVATIVE-SENSITIZED PHOTOIRRADIATION. Photochemistry and Photobiology, 1984, 39, 425-428.	1.3	7
53	Cystoscopic Fluorescence Detector for Photodetection of Bladder Carcinoma with Hematoporphyrin Derivative. Journal of Urology, 1984, 131, 587-590.	0.2	20
54	MEMBRANE LYSIS IN CHINESE HAMSTER OVARY CELLS TREATED WITH HEMATOPORPHYRIN DERIVATIVE PLUS LIGHT. Photochemistry and Photobiology, 1982, 36, 43-47.	1.3	77