Sanping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5674889/publications.pdf

Version: 2024-02-01

			101543		155660
116	3,928		36		55
papers	citations		h-index		g-index
116	116		116		3046
all docs	docs citations		times ranked		citing authors
	papers	papers citations 116 116	116 3,928 citations 116 116	papers citations h-index 116 116 116	116 3,928 36 papers citations h-index 116 116 116

#	Article	IF	CITATIONS
1	Steric hindrance effect of Schiff-base ligands on magnetic relaxation dynamics and emissive behavior of two dinuclear dysprosium complexes. Journal of Rare Earths, 2023, 41, 1049-1057.	4.8	5
2	Improved oxygen balance and effective energy density by coligand and dehydration strategy: Synthesis and characterization of two new energetic coordination polymers. Chemical Thermodynamics and Thermal Analysis, 2022, 6, 100035.	1.5	1
3	Copper-Based Energetic Coordination Polymers Regulated by CN [–] and NO ₃ [–] for the Combustion Decomposition of Ammonium Perchlorate. ACS Applied Polymer Materials, 2022, 4, 4520-4527.	4.4	4
4	Dynamic Metal–lodide Bonds in a Tetracoordinated Cadmium-Based Metal–Organic Framework Boosting Efficient CO ₂ Cycloaddition under Solvent- and Cocatalyst-Free Conditions. Inorganic Chemistry, 2022, 61, 7484-7496.	4.0	11
5	Triphenylamine-based cadmium coordination polymer as a heterogeneous photocatalyst for visible-light-driven α-alkylation of aldehydes. Journal of Solid State Chemistry, 2022, , 123241.	2.9	O
6	High temperature quantum tunnelling of magnetization and thousand kelvin anisotropy barrier in a Dy ₂ single-molecule magnet. Chemical Communications, 2021, 57, 371-374.	4.1	33
7	Solvent responses and substituent effects upon magnetic properties of mononuclear Dy ^{III} compounds. Dalton Transactions, 2021, 50, 624-637.	3.3	13
8	Tailoring Electronic Structure and Size of Ultrastable Metalated Metal–Organic Frameworks with Enhanced Electroconductivity for Highâ€Performance Supercapacitors. Angewandte Chemie, 2021, 133, 10316-10326.	2.0	6
9	Tailoring Electronic Structure and Size of Ultrastable Metalated Metal–Organic Frameworks with Enhanced Electroconductivity for Highâ€Performance Supercapacitors. Angewandte Chemie - International Edition, 2021, 60, 10228-10238.	13.8	55
10	Solvent-Free Lithium/Sodium-Based Metal–Organic Frameworks with Versatile Nitrogen-Rich Ligands: Insight for the Design of Promising Superheat-Resistant Explosives. Inorganic Chemistry, 2021, 60, 9282-9286.	4.0	18
11	Microcalorimetry-guided pore-microenvironment optimization to improve sensitivity of Ni-MOF electrochemical biosensor for chiral galantamine. Chemical Engineering Journal, 2021, 426, 130730.	12.7	8
12	Anionic oxoborane and thioxoborane molecules supported by a 1,2-bis(imino)acenaphthene ligand. Dalton Transactions, 2021, 50, 6797-6801.	3.3	3
13	In Situ Ligand Formation in the Synthetic Processes from Mononuclear Dy(III) Compounds to Binuclear Dy(III) Compounds: Synthesis, Structure, Magnetic Behavior, and Theoretical Analysis. Inorganic Chemistry, 2021, 60, 816-830.	4.0	19
14	Improved Detonation Performance Via Coordination Substitution: Synthesis and Characterization of Two New Green Energetic Coordination Polymers. ACS Applied Materials & Interfaces, 2021, 13, 563-569.	8.0	23
15	Ultrasensitive aptasensing of insulin based on hollow porous C3N4/S2O82â^'/AuPtAg ECL ternary system and DNA walker amplification. Biosensors and Bioelectronics, 2020, 148, 111795.	10.1	51
16	A graphene oxide functionalized energetic coordination polymer possesses good thermostability, heat release and combustion catalytic performance for ammonium perchlorate. Dalton Transactions, 2020, 49, 1582-1590.	3.3	26
17	Modulating magnetic dynamics through tailoring the terminal ligands in Dy ₂ single-molecule magnets. Dalton Transactions, 2020, 49, 808-816.	3.3	16
18	Thi-Au-Fe3O4 confined in ZIF-8 nanoreactor as signal-amplifying tag for constructing high-efficiency electrochemical platform. Sensors and Actuators B: Chemical, 2020, 305, 127496.	7.8	19

#	Article	IF	Citations
19	Exploring the highly dense energetic materials via regiochemical modulation: A comparative study of two fluorodinitromethyl-functionalized herringbone trifuroxans. Chemical Engineering Journal, 2020, 391, 123573.	12.7	28
20	Synergistic effect of mixed ligands on the anisotropy axis of two dinuclear dysprosium complexes. Dalton Transactions, 2020, 49, 10594-10602.	3.3	9
21	Hierarchical Porous integrated Co _{1â^'} <i>_x</i> >S/CoFe ₂ O ₄ @rGO Nanoflowers Fabricated via Temperatureâ€Controlled In Situ Calcining Sulfurization of Multivariate CoFeâ€MOFâ€₹4@rGO for Highâ€Performance Supercapacitor. Advanced Functional Materials, 2020, 30,	14.9	121
22	An Inconspicuous Six-Coordinate Neutral Dy ^{III} Single-Ion Magnet with Remarkable Magnetic Anisotropy and Stability. Inorganic Chemistry, 2020, 59, 7158-7166.	4.0	31
23	3,4-Bis(3-tetrazolylfuroxan-4-yl)furoxan: A Linear C–C Bonded Pentaheterocyclic Energetic Material with High Heat of Formation and Superior Performance. ACS Omega, 2020, 5, 11115-11122.	3.5	7
24	Synthesis and characterization of a new energetic metal–organic framework for use in potential propellant compositions. Green Chemistry, 2020, 22, 5050-5058.	9.0	27
25	A Trinuclear Zinc Coordination Cluster Exhibiting Fluorescence, Colorimetric Sensitivity, and Recycling of Silver Ion and Detection of Cupric Ion. Inorganic Chemistry, 2020, 59, 2833-2842.	4.0	23
26	A Silylene–Germylene Molecule Containing a Si ^l â^'Ge ^l Single Bond. Chemistry - A European Journal, 2020, 26, 6122-6125.	3.3	7
27	A Luminescent Mg-Metal–Organic Framework for Sustained Release of 5-Fluorouracil: Appropriate Host–Guest Interaction and Satisfied Acid–Base Resistance. ACS Applied Materials & Interfaces, 2020, 12, 14914-14923.	8.0	37
28	Modulating energetic performance through decorating nitrogen-rich ligands in high-energy MOFs. Dalton Transactions, 2020, 49, 2300-2307.	3.3	18
29	Ligand ratio/solvent-influenced syntheses, crystal structures, and magnetic properties of polydentate Schiff base ligand-Dy($<$ scp $>$ iii $<$ /scp $>$) compounds with \hat{l}^2 -diketonate ligands as co-ligands. Dalton Transactions, 2019, 48, 12466-12481.	3.3	26
30	Regulation of Substituent Effects on Configurations and Magnetic Performances of Mononuclear Dylll Single-Molecule Magnets. Inorganic Chemistry, 2019, 58, 15330-15343.	4.0	25
31	Synthesis and Properties of Energetic Hydrazinium 5-Nitro-3-dinitromethyl-2 <i>H</i> -pyrazole by Unexpected Isomerization of <i>N</i> -Nitropyrazole. ACS Omega, 2019, 4, 19011-19017.	3.5	8
32	Crystal structures, thermodynamics and accelerating thermal decomposition of RDX: two new energetic coordination polymers based on a Y-shaped ligand of tris(5-aminotetrazole)triazine. New Journal of Chemistry, 2019, 43, 14336-14342.	2.8	15
33	Solvent coligands fine-tuned the structures and magnetic properties of triple-bridged 1D azido-copper(<scp>ii</scp>) coordination polymers. New Journal of Chemistry, 2019, 43, 601-608.	2.8	12
34	3D solvent-free energetic metal–organic framework (EMOF) achieved by removing inclusion molecules from a new coordination polymer. CrystEngComm, 2019, 21, 583-588.	2.6	13
35	A Robust Tb ^{III} -MOF for Ultrasensitive Detection of Trinitrophenol: Matched Channel Dimensions and Strong Host–Guest Interactions. Inorganic Chemistry, 2019, 58, 8198-8207.	4.0	58
36	Effect of coordination anion substitutions on relaxation dynamics of defect dicubane Zn2Dy2 tetranuclear clusters. Dalton Transactions, 2019, 48, 7844-7852.	3.3	14

3

#	Article	IF	Citations
37	An Anionic βâ€Diketiminato Oxoborane with a B–O Double Bond. European Journal of Inorganic Chemistry, 2019, 2019, 2635-2638.	2.0	6
38	Thermostable and insensitivity furazan energetic complexes: Syntheses, structures and modified combustion performance for ammonium perchlorate. Polyhedron, 2019, 164, 169-175.	2.2	6
39	Enhancing Energetic Performance of Multinuclear Ag(I)-Cluster MOF-Based High-Energy-Density Materials by Thermal Dehydration. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9233-9238.	8.0	70
40	Fine-tuning the type of equatorial donor atom in pentagonal bipyramidal Dy(<scp>iii</scp>) complexes to enhance single-molecule magnet properties. Dalton Transactions, 2019, 48, 16384-16394.	3.3	17
41	A Tetra-amido-Protected Ge ₅ -Spiropentadiene. Journal of the American Chemical Society, 2019, 141, 19252-19256.	13.7	9
42	Bromine-bridged Dy2 single-molecule magnet: magnetic anisotropy driven by <i>cis</i> /i>/ <i>trans</i> stereoisomers. Chemical Communications, 2019, 55, 14661-14664.	4.1	28
43	Solvent-tuned magnetic exchange interactions in Dy ₂ systems ligated by a \hat{l} 4-phenolato heptadentate Schiff base. RSC Advances, 2019, 9, 39640-39648.	3.6	12
44	Highly stable Ni-MOF comprising triphenylamine moieties as a high-performance redox indicator for sensitive aptasensor construction. Analytica Chimica Acta, 2019, 1049, 74-81.	5.4	37
45	Capping Nâ€Donor Ligands Modulate the Magnetic Dynamics of Dy ^{lll} βâ€Diketonate Singleâ€ion Magnets with <i>D</i> _{4<i>d</i>} Symmetry. Chemistry - A European Journal, 2019, 25, 3884-3892.	3.3	32
46	Ce(III, IV)-MOF electrocatalyst as signal-amplifying tag for sensitive electrochemical aptasensing. Biosensors and Bioelectronics, 2018, 109, 63-69.	10.1	87
47	Ge ^I –Ge ^I Coupling Reaction Induced by a Mixture of CoBr ₂ and a Seven-Membered N-Heterocyclic Carbene. Inorganic Chemistry, 2018, 57, 2969-2972.	4.0	12
48	Light Metal Li/K-Based Energetic Coordination Polymers: Structural Effect on Detonation Performance. ACS Applied Energy Materials, 2018, 1, 700-706.	5.1	9
49	Excess axial electrostatic repulsion as a criterion for pentagonal bipyramidal Dy ^{$< sup$ single-ion magnets with high $sup < sub < sub$ and $sup < sub$}	5.5	68
50	NH ₂ -Ni-MOF electrocatalysts with tunable size/morphology for ultrasensitive C-reactive protein detection <i>via</i> an aptamer binding induced DNA walker–antibody sandwich assay. Journal of Materials Chemistry B, 2018, 6, 2426-2431.	5.8	78
51	Influence of alcoholic solvent and acetate anion coordination mode variations on structures and magnetic properties of heterometallic Zn ₂ Dy ₂ tetranuclear clusters. Dalton Transactions, 2018, 47, 16616-16626.	3.3	19
52	Concise Chemistry Modulation of the SMM Behavior within a Family of Mononuclear Dy(III) Complexes. Inorganic Chemistry, 2018, 57, 14843-14851.	4.0	48
53	A one-step structure-switching electrochemical sensor for transcription factor detection enhanced with synergistic catalysis of PtNi@MIL-101 and Exo III-assisted cycling amplification. Chemical Communications, 2018, 54, 11901-11904.	4.1	23
54	Lanthanide Discrimination with Hydroxyl-Decorated Flexible Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13895-13900.	4.0	24

#	Article	IF	CITATIONS
55	Low temperature heat capacity and magnetic property of two H2ZTO-Co(II) coordination polymers (H2ZTO = 4,4′-azo-1,2,4-triazol-5-one). Journal of Chemical Thermodynamics, 2018, 125, 214-219.	2.0	4
56	The slow magnetic relaxation regulated by the coordination, configuration and intermolecular dipolar field in two mononuclear Dy ^{III} single-molecule magnets (SMMs). Dalton Transactions, 2018, 47, 12393-12405.	3.3	27
57	A difunctional azido-cobalt(<scp>ii</scp>) coordination polymer exhibiting slow magnetic relaxation behaviour and high-energy characteristics with good thermostability and insensitivity. Dalton Transactions, 2018, 47, 12092-12104.	3.3	34
58	Two {ZnII2Dy ^{III} } complexes supported by monophenoxido/dicarboxylate bridges with multiple relaxation processes: carboxylato ancillary ligand-controlled magnetic anisotropy in square antiprismatic Dy ^{III} species. Dalton Transactions, 2018, 47, 9482-9491.	3.3	13
59	Ligand field fine-tuning on the modulation of the magnetic properties and relaxation dynamics of dysprosium(<scp>iii</scp>) single-ion magnets (SIMs): synthesis, structure, magnetism and ab initio calculations. Journal of Materials Chemistry C, 2017, 5, 1369-1382.	5.5	39
60	Three new energetic complexes with N,N-bis(1H-tetrazole-5-yl)-amine as high energy density materials: syntheses, structures, characterization and effects on the thermal decomposition of RDX. Dalton Transactions, 2017, 46, 2626-2634.	3.3	34
61	A solvent-free dense energetic metal–organic framework (EMOF): to improve stability and energetic performance via in situ microcalorimetry. Chemical Communications, 2017, 53, 3034-3037.	4.1	58
62	Co II /Mn II MOFs containing the characteristic double metal chains: Synthesis, structure and magnetic property. Inorganic Chemistry Communication, 2017, 80, 23-26.	3.9	12
63	Superior Thermostability, Good Detonation Properties, Insensitivity, and the Effect on the Thermal Decomposition of Ammonium Perchlorate for a New Solventâ€Free 3D Energetic Pb ^{II} â€MOF. Chemistry - A European Journal, 2017, 23, 9149-9155.	3.3	43
64	A substituent effect of phenylacetic acid coligand perturbed structures and magnetic properties observed in two triple-bridged azido-Cu(<scp>ii</scp>) chain compounds with ferromagnetic ordering and slow magnetic relaxation. Dalton Transactions, 2017, 46, 7556-7566.	3.3	17
65	Unusual undecanuclear heterobimetallic $Zn < sub > 4 < sub > Ln < sub > 7 < sub > (Ln = Gd, Dy)$ nano-sized clusters encapsulating two peroxide anions through spontaneous intake of dioxygen. Dalton Transactions, 2017, 46, 8138-8145.	3.3	16
66	Low temperature heat capacity, standard entropy, standard enthalpy and magnetic property: a new 1D Cu ^I coordination polymer incorporating tetrazole-1-acetic acid and p-nitrobenzoic acid. Dalton Transactions, 2017, 46, 1878-1884.	3.3	5
67	Pore-size-tuned host–guest interactions in Co-MOFs via in situ microcalorimetry: adsorption and magnetism. Journal of Materials Chemistry C, 2017, 5, 1064-1073.	5.5	25
68	Coligand modifications fine-tuned the structure and magnetic properties of two triple-bridged azido-Cu(<scp>ii</scp>) chain compounds exhibiting ferromagnetic ordering and slow relaxation. Dalton Transactions, 2017, 46, 1207-1217.	3.3	64
69	Ferrocene covalently confined in porous MOF as signal tag for highly sensitive electrochemical immunoassay of amyloid- \hat{l}^2 . Journal of Materials Chemistry B, 2017, 5, 8330-8336.	5.8	69
70	Experimental and Theoretical Interpretation on the Magnetic Behavior in a Series of Pentagonalâ€Bipyramidal Dy ^{III} Singleâ€ion Magnets. Chemistry - A European Journal, 2017, 23, 17775-17787.	3.3	56
71	Isomeric ligands enhance the anisotropy barrier within nine-coordinated {Dy ₂ } compounds. Journal of Materials Chemistry C, 2017, 5, 9488-9495.	5.5	29
72	Solvent orientation in the crystal lattice producing distinct magnetic dynamics in two binuclear Dy(<scp>iii</scp>) polymorphs with a polydentate Schiff base ligand. CrystEngComm, 2017, 19, 5735-5741.	2.6	12

#	Article	IF	CITATIONS
73	Axial substitution of a precursor resulted in two high-energy copper(<scp>ii</scp>) complexes with superior detonation performances. Dalton Transactions, 2017, 46, 12893-12900.	3.3	13
74	Magnetic Interaction Affecting the Zero-Field Single-Molecule Magnet Behaviors in Isomorphic {Ni ^{II} ₂ Dy ^{III} _{} and {Co^{II}₂Dy^{III}₂} Tetranuclear Complexes. Inorganic Chemistry, 2017, 56, 11387-11397.}	4.0	22
75	Interchange between coordinated and lattice solvents generates the highest energy barrier within nine-coordinated Dy ^{III} single molecule magnets. Dalton Transactions, 2017, 46, 11159-11165.	3.3	16
76	Rare Co/Fe-MOFs exhibiting high catalytic activity in electrochemical aptasensors for ultrasensitive detection of ochratoxin A. Chemical Communications, 2017, 53, 9926-9929.	4.1	49
77	A Two-Coordinate Neutral Germylene Supported by a \hat{I}^2 -Diketiminate Ligand in the Radical State. Organometallics, 2017, 36, 2706-2709.	2.3	27
78	Fineâ€Tuning Ligand Fields with Schiffâ€Base Ligands in Dy ₂ Compounds. European Journal of Inorganic Chemistry, 2017, 2017, 811-819.	2.0	10
79	Effects of metal organic framework Fe-BTC on the thermal decomposition of ammonium perchlorate. RSC Advances, 2016, 6, 67308-67314.	3.6	67
80	High performance 5-aminotetrazole-based energetic MOF and its catalytic effect on decomposition of RDX. RSC Advances, 2016, 6, 46212-46217.	3.6	20
81	Ag(<scp>i</scp>)-based high-energy metal organic frameworks (HE-MOFs) incorporating coordinated moieties in channels: synthesis, structure and physicochemical properties. RSC Advances, 2016, 6, 93231-93237.	3.6	20
82	A unusual two-dimensional azido-Cu(<scp>ii</scp>) network with benzoate derivative as a co-ligand exhibiting ferromagnetic order and slow magnetic relaxation. RSC Advances, 2016, 6, 96103-96108.	3.6	9
83	Copper-based energetic MOFs with 3-nitro-1H-1,2,4-triazole: solvent-dependent syntheses, structures and energetic performances. Dalton Transactions, 2016, 45, 17304-17311.	3.3	31
84	Fine-Tuning of the Coordination Environment To Regulate the Magnetic Behavior in Solvent/Anion-Dependent Dy ^{III} Compounds: Synthesis, Structure, Magnetism, and Ab Initio Calculations. Inorganic Chemistry, 2016, 55, 10587-10596.	4.0	30
85	Two energetic complexes incorporating 3,5-dinitrobenzoic acid and azole ligands: microwave-assisted synthesis, favorable detonation properties, insensitivity and effects on the thermal decomposition of RDX. New Journal of Chemistry, 2016, 40, 7779-7786.	2.8	20
86	Magnetization Dynamics Changes of Dysprosium(III) Single-Ion Magnets Associated with Guest Molecules. Inorganic Chemistry, 2016, 55, 3865-3871.	4.0	61
87	Dysprosium($<$ scp $>$ iii $<$ /scp $>$) complexes with a square-antiprism configuration featuring mononuclear single-molecule magnetic behaviours based on different \hat{l}^2 -diketonate ligands and auxiliary ligands. Dalton Transactions, 2016, 45, 5310-5320.	3.3	28
88	Instant high-selectivity Cd-MOF chemosensor for naked-eye detection of Cu(<scp>ii</scp>) confirmed using in situ microcalorimetry. Green Chemistry, 2016, 18, 951-956.	9.0	50
89	High-energy metal–organic frameworks (HE-MOFs): Synthesis, structure and energetic performance. Coordination Chemistry Reviews, 2016, 307, 292-312.	18.8	259
90	Hydrothermal synthesis, structure and property of transition metal(Mn, Zn, Cd or Pb) coordination frameworks using quinoline-8-oxy-acetate acid and dicarboxylic acid as ligands. Chemical Research in Chinese Universities, 2015, 31, 489-497.	2.6	7

#	Article	IF	CITATIONS
91	Synthesis, structures, and magnetic properties of four dodecanuclear Ni ₈ RE ₄ (REÂ=ÂGd, Dy, Y) clusters trapping four 1¼ ₅ -bridged carbonate anions. Journal of Coordination Chemistry, 2015, 68, 808-822.	2.2	16
92	Silver(<scp>i</scp>)-based energetic coordination polymers: synthesis, structure and energy performance. New Journal of Chemistry, 2015, 39, 7849-7857.	2.8	35
93	A nine-coordinated dysprosium(<scp>iii</scp>) compound with an oxalate-bridged dysprosium(<scp>iii</scp>) layer exhibiting two slow magnetic relaxation processes. Chemical Communications, 2015, 51, 15188-15191.	4.1	45
94	Single-Ion-Magnet Behavior in a Two-Dimensional Coordination Polymer Constructed from Co ^{II} Nodes and a Pyridylhydrazone Derivative. Inorganic Chemistry, 2015, 54, 8884-8886.	4.0	130
95	High-Performance Energetic Characteristics and Magnetic Properties of a Three-Dimensional Cobalt(II) Metal–Organic Framework Assembled with Azido and Triazole. Inorganic Chemistry, 2015, 54, 11520-11525.	4.0	51
96	A Dy ₂ single-molecule magnet with benzoate anions and phenol-O ^{â^'} bridging groups. Dalton Transactions, 2015, 44, 21025-21031.	3.3	31
97	In situ synthesized 3D heterometallic metal–organic framework (MOF) as a high-energy-density material shows high heat of detonation, good thermostability and insensitivity. Dalton Transactions, 2015, 44, 2333-2339.	3.3	78
98	Environmentally friendly high-energy MOFs: crystal structures, thermostability, insensitivity and remarkable detonation performances. Green Chemistry, 2015, 17, 831-836.	9.0	127
99	A new family of heterometallic tetranuclear [MnIII2LnIII2] (Ln = Eu, Gd, Tb, Dy) isostructural clusters: Syntheses, crystal structures and magnetic properties. Polyhedron, 2015, 87, 109-116.	2.2	23
100	A New Strategy for Storage and Transportation of Sensitive Highâ€Energy Materials: Guestâ€Dependent Energy and Sensitivity of 3D Metal–Organicâ€Frameworkâ€Based Energetic Compounds. Chemistry - A European Journal, 2014, 20, 7906-7910.	3.3	70
101	Intermolecular interaction influenced energy and sensitivity of highly energetic salts: structure and physicochemical properties. CrystEngComm, 2014, 16, 4245-4253.	2.6	20
102	A triple-bridged azido-Cu(<scp>ii</scp>) chain compound fine-tuned by mixed carboxylate/ethanol linkers displays slow-relaxation and ferromagnetic order: synthesis, crystal structure, magnetic properties and DFT calculations. Dalton Transactions, 2014, 43, 15359-15366.	3.3	19
103	Effect of phenylacetic acid coligands on the structures and magnetic properties of azido-bridged copper(<scp>ii</scp>)-chain compounds. CrystEngComm, 2014, 16, 4194-4201.	2.6	13
104	Solvent-Induced Syntheses, Crystal Structures, Magnetic Properties, and Single-Crystal-to-Single-Crystal Transformation of Azido-Cu(II) Coordination Polymers with 2-Naphthoic Acid as Co-ligand. Inorganic Chemistry, 2014, 53, 8088-8097.	4.0	54
105	Structure, Physicochemical Properties, and Density Functional Theory Calculation of High-Energy-Density Materials Constructed with Intermolecular Interaction: Nitro Group Charge Determines Sensitivity. Journal of Physical Chemistry C, 2014, 118, 23487-23498.	3.1	44
106	3D high-energy-density and low sensitivity materials: synthesis, structure and physicochemical properties of an azide–Cu(<scp>ii</scp>) complex with 3,5-dinitrobenzoic acid. RSC Advances, 2014, 4, 16087-16093.	3.6	45
107	High-energy-density materials with remarkable thermostability and insensitivity: syntheses, structures and physicochemical properties of Pb(<scp>ii</scp>) compounds with 3-(tetrazol-5-yl) triazole. Journal of Materials Chemistry A, 2014, 2, 11958.	10.3	94
108	Magneto-structural correlation and low temperature heat capacity of a Mn (III) quadridentate Schiff-base coordination compound. Journal of Chemical Thermodynamics, 2014, 74, 247-254.	2.0	10

#	Article	IF	CITATION
109	Lanthanide coordination compounds with 1H-benzimidazole-2-carboxylic acid: syntheses, structures and spectroscopic properties. CrystEngComm, 2013, 15, 86-99.	2.6	53
110	Synthesis, crystal structure, sensitivity, and effect on thermal decomposition of ammonium perchlorate: an energetic compound Cu(HATZ)(PDA)(H ₂ O). Journal of Coordination Chemistry, 2012, 65, 2584-2592.	2.2	21
111	Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2 and effect on thermal decomposition of ammonium perchlorate. Journal of Hazardous Materials, 2011, 197, 199-203.	12.4	100
112	Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane. Journal of Solid State Chemistry, 2011, 184, 1777-1783.	2.9	27
113	In situ calorimetric investigation of ZnO transformation from flower-like nanostructures to microrod. Materials Chemistry and Physics, 2010, 122, 301-304.	4.0	8
114	Syntheses and Characterization of Lead(II)N,N-Bis[1(2)H-tetrazol-5-yl]amine Compounds and Effects on Thermal Decomposition of Ammonium Perchlorate. European Journal of Inorganic Chemistry, 2009, 2009, 3475-3480.	2.0	32
115	Thermal decomposition kinetics of the Pb0.25Ba0.75(TNR)·H2O complex. Journal of Hazardous Materials, 2005, 117, 103-110.	12.4	38
116	CONSTRUCTION OF A ROTATING-BOMB COMBUSTION CALORIMETER AND MEASUREMENT OF THERMAL EFFECTS. Instrumentation Science and Technology, 2002, 30, 311-321.	1.8	73