

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5674321/publications.pdf Version: 2024-02-01

OIN LI

#	Article	IF	CITATIONS
1	van der Waals type II carbon nitride homojunctions for visible light photocatalytic hydrogen evolution. Nano Research, 2023, 16, 5864-5872.	5.8	12
2	Monochromatic Blue and Switchable Blueâ€Green Carbon Quantum Dots by Roomâ€Temperature Air Plasma Processing. Advanced Materials Technologies, 2022, 7, 2100586.	3.0	16
3	Band Alignment with Selfâ€Assembled 2D Layer of Carbon Derived from Waste to Balance Charge Injection in Perovskite Crystals Based Rigid and Flexible Light Emitting Diodes. Advanced Materials Technologies, 2022, 7, 2100583.	3.0	4
4	Emerging technologies for PFOS/PFOA degradation and removal: A review. Science of the Total Environment, 2022, 827, 153669.	3.9	83
5	Delaminating Ti3C2 MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytic hydrogen production. Journal of Materials Science and Technology, 2022, 120, 89-98.	5.6	53
6	Robust S-scheme hierarchical Au-ZnIn2S4/NaTaO3: Facile synthesis, superior photocatalytic H2 production and its charge transfer mechanism. Journal of Colloid and Interface Science, 2022, 625, 785-799.	5.0	29
7	Drastic promotion of the photoreactivity of MOF ultrathin nanosheets towards hydrogen production by deposition with CdS nanorods. Applied Catalysis B: Environmental, 2021, 285, 119801.	10.8	72
8	Localized Surface Plasmon Enhanced Laser Reduction of Graphene Oxide for Wearable Strain Sensor. Advanced Materials Technologies, 2021, 6, 2001191.	3.0	16
9	Embedding CdS@Au into Ultrathin Ti _{3–<i>x</i>} C ₂ T _{<i>y</i>} to Build Dual Schottky Barriers for Photocatalytic H ₂ Production. ACS Catalysis, 2021, 11, 8510-8520.	5.5	193
10	Recent advances on Bismuth-based Photocatalysts: Strategies and mechanisms. Chemical Engineering Journal, 2021, 419, 129484.	6.6	145
11	Insulator in photocatalysis: Essential roles and activation strategies. Chemical Engineering Journal, 2021, 426, 130772.	6.6	12
12	One-step solid state synthesis of facet-dependent contact TiO2 hollow nanocubes and reduced graphene oxide hybrids with 3D/2D heterojunctions for enhanced visible photocatalytic activity. Applied Surface Science, 2020, 504, 144353.	3.1	24
13	Single atomic Au induced dramatic promotion of the photocatalytic activity of TiO ₂ hollow microspheres. Chemical Communications, 2020, 56, 1745-1748.	2.2	64
14	Sharply increasing the visible photoreactivity of g-C3N4 by breaking the intralayered hydrogen bonds. Applied Surface Science, 2020, 505, 144654.	3.1	45
15	Three in one: atomically dispersed Na boosting the photoreactivity of carbon nitride towards NO oxidation. Chemical Communications, 2020, 56, 14195-14198.	2.2	64
16	Excellent photoreduction performance of Cr(<scp>vi</scp>) over (WO ₄) ^{2â^'} -doped metal organic framework materials. New Journal of Chemistry, 2020, 44, 20704-20714.	1.4	10
17	Fe ₁ /TiO ₂ Hollow Microspheres: Fe and Ti Dual Active Sites Boosting the Photocatalytic Oxidation of NO. Small, 2020, 16, e2004583.	5.2	62
18	Dendritic Cellâ€Inspired Designed Architectures toward Highly Efficient Electrocatalysts for Nitrate Reduction Reaction. Small, 2020, 16, e2001775.	5.2	74

#	Article	IF	CITATIONS
19	2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea. Applied Catalysis B: Environmental, 2020, 268, 118738.	10.8	417
20	Biowasteâ€Derived, Selfâ€Organized Arrays of Highâ€Performance 2D Carbon Emitters for Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1906176.	11.1	27
21	Ensembles of Photonic Beads: Optical Properties and Enhanced Light—Matter Interactions. Advanced Optical Materials, 2020, 8, 1901537.	3.6	16
22	Size and charge dual-transformable mesoporous nanoassemblies for enhanced drug delivery and tumor penetration. Chemical Science, 2020, 11, 2819-2827.	3.7	66
23	Surface and interface modification strategies of CdS-based photocatalysts. Interface Science and Technology, 2020, , 313-348.	1.6	17
24	One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure. Journal of Materials Science and Technology, 2020, 56, 206-215.	5.6	126
25	Photosensitization of Bi2O2CO3 nanoplates with amorphous Bi2S3 to improve the visible photoreactivity towards NO oxidation. Applied Surface Science, 2019, 495, 143561.	3.1	46
26	A monolithic copolymer prepared from N-(4-vinyl)-benzyl iminodiacetic acid, divinylbenzene and N,N′-methylene bisacrylamide for preconcentration of cadmium(II) and cobalt(II) from biological samples prior to their determination by ICP-MS. Mikrochimica Acta, 2019, 186, 537.	2.5	13
27	Photocatalytic H2 generation from aqueous ammonia solution using TiO2 nanowires-intercalated reduced graphene oxide composite membrane under low power UV light. Emergent Materials, 2019, 2, 303-311.	3.2	30
28	Dramatic promotion of visible-light photoreactivity of TiO2 hollow microspheres towards NO oxidation by introduction of oxygen vacancy. Applied Catalysis B: Environmental, 2019, 256, 117860.	10.8	142
29	SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement. Chinese Journal of Catalysis, 2019, 40, 755-764.	6.9	93
30	Protocells self-assembled by hydroxyapatite nanoparticles: Highly efficient and selective enrichment of chlorophenols in an aqueous environment. Chemosphere, 2019, 233, 1-8.	4.2	8
31	CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion. Chinese Journal of Catalysis, 2019, 40, 959-968.	6.9	70
32	One-step construction of Pickering emulsion via commercial TiO2 nanoparticles for photocatalytic dye degradation. Applied Catalysis B: Environmental, 2019, 249, 1-8.	10.8	89
33	Enhanced visible-light photocatalytic CO2 reduction performance of Znln2S4 microspheres by using CeO2 as cocatalyst. Applied Surface Science, 2019, 464, 388-395.	3.1	160
34	Fabrication of high photoreactive carbon nitride nanosheets by polymerization of amidinourea for hydrogen production. Applied Catalysis B: Environmental, 2019, 245, 197-206.	10.8	62
35	In-situ transformation of Bi2WO6 to highly photoreactive Bi2WO6@Bi2S3 nanoplate via ion exchange. Chinese Journal of Catalysis, 2018, 39, 718-727.	6.9	54
36	Laserâ€Reduced Graphene: Synthesis, Properties, and Applications. Advanced Materials Technologies, 2018, 3, 1700315.	3.0	116

#	Article	IF	CITATIONS
37	High performance heterojunction photocatalytic membranes formed by embedding Cu ₂ O and TiO ₂ nanowires in reduced graphene oxide. Catalysis Science and Technology, 2018, 8, 1704-1711.	2.1	23
38	Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production. Applied Catalysis B: Environmental, 2018, 229, 8-14.	10.8	72
39	Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure. Applied Catalysis B: Environmental, 2018, 232, 330-339.	10.8	123
40	Inorganic Self-Assembled Bioactive Artificial Proto-Osteocells Inducing Bone Regeneration. ACS Applied Materials & Interfaces, 2018, 10, 10718-10728.	4.0	14
41	Selective toxicity of hydroxyl-rich carbon nanodots for cancer research. Nano Research, 2018, 11, 2204-2216.	5.8	24
42	Fabrication of walnut-like BiVO4@Bi2S3 heterojunction for efficient visible photocatalytic reduction of Cr(VI). Materials Science in Semiconductor Processing, 2018, 75, 334-341.	1.9	47
43	Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 Z-scheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation. Chemical Engineering Journal, 2018, 336, 200-210.	6.6	79
44	Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis. Chemical Engineering Journal, 2018, 349, 287-296.	6.6	166
45	TiO2 faceted nanocrystals on the nanofibers: Homojunction TiO2 based Z-scheme photocatalyst for air purification. Applied Surface Science, 2018, 456, 817-826.	3.1	59
46	Photocatalytic Oxidation of Acetone Over High Thermally Stable TiO2 Nanosheets With Exposed (001) Facets. Frontiers in Chemistry, 2018, 6, 175.	1.8	46
47	Superiority of graphene over carbon analogs for enhanced photocatalytic H2-production activity of ZnIn2S4. Applied Catalysis B: Environmental, 2017, 206, 344-352.	10.8	156
48	Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process. Chemosphere, 2017, 176, 212-220.	4.2	10
49	Technologies for reducing sludge production in wastewater treatment plants: State of the art. Science of the Total Environment, 2017, 587-588, 510-521.	3.9	111
50	Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4. Applied Surface Science, 2017, 401, 333-340.	3.1	63
51	Fabrication of TiO 2 hollow microspheres assembly from nanosheets (TiO 2 -HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity. Applied Catalysis B: Environmental, 2017, 210, 184-193.	10.8	76
52	Sandwich-structured TiO ₂ inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency. Journal of Materials Chemistry A, 2017, 5, 12803-12810.	5.2	39
53	HEPES-mediated controllable synthesis of hierarchical CuO nanostructures and their analogous photo-Fenton and antibacterial performance. Advanced Powder Technology, 2017, 28, 1332-1339.	2.0	15
54	Heterojunction construction between TiO2 hollowsphere and ZnIn2S4 flower for photocatalysis application. Applied Surface Science, 2017, 398, 81-88.	3.1	123

#	Article	IF	CITATIONS
55	Facile synthesis of CNTs/Caln 2 S 4 composites with enhanced visible-light photocatalytic performance. Applied Surface Science, 2017, 391, 565-571.	3.1	48
56	Detection of regional DNA methylation using DNA-graphene affinity interactions. Biosensors and Bioelectronics, 2017, 87, 615-621.	5.3	56
57	An on-line process dead-time estimation algorithm. , 2017, , .		1
58	A methodology to determine the dynamic relationship between process and manipulated variables. , 2017, , .		0
59	Extending the Harris Index performance assessment technique: A plant-wide focus. , 2016, , .		2
60	Photocatalytic selective oxidation of phenol to produce dihydroxybenzenes in a TiO 2 /UV system: Hydroxyl radical versus hole. Applied Catalysis B: Environmental, 2016, 199, 405-411.	10.8	95
61	Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Applied Catalysis B: Environmental, 2016, 185, 225-232.	10.8	331
62	The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale, 2016, 8, 7449-7458.	2.8	125
63	Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals–A Multifunctional Fluorescence-Based Sensor Platform. Scientific Reports, 2015, 5, 14439.	1.6	35
64	Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4. Applied Surface Science, 2015, 358, 336-342.	3.1	87
65	CdS/Graphene Nanocomposite Photocatalysts. Advanced Energy Materials, 2015, 5, 1500010.	10.2	694
66	Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B: Environmental, 2015, 176-177, 44-52.	10.8	919
67	Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection. Journal of Colloid and Interface Science, 2015, 437, 28-34.	5.0	67
68	Enhanced Photocatalytic Hydrogenâ€Production Performance of Graphene–Zn _{<i>x</i>} Cd _{1â^'<i>x</i>} S Composites by Using an Organic S Source. Chemistry - A European Journal, 2014, 20, 1176-1185.	1.7	149
69	Microwave-assisted hydrothermal synthesis of graphene based Au–TiO ₂ photocatalysts for efficient visible-light hydrogen production. Journal of Materials Chemistry A, 2014, 2, 3847-3855.	5.2	314
70	Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi ₂ WO ₆ nanosheets. Physical Chemistry Chemical Physics, 2014, 16, 1111-1120.	1.3	256
71	Visibleâ€Light Photocatalytic Hydrogen Production Activity of ZnIn ₂ S ₄ Microspheres Using Carbon Quantum Dots and Platinum as Dual Coâ€catalysts. Chemistry - an Asian Journal, 2014, 9, 1766-1770.	1.7	107
72	HEPES and polyol mediated solvothermal synthesis of hierarchical porous ZnO microspheres and their improved photocatalytic activity. Materials Letters, 2014, 130, 115-119.	1.3	20

#	Article	IF	CITATIONS
73	Ionicâ€Liquidâ€Assisted Synthesis of Uniform Fluorinated B/Câ€Codoped TiO ₂ Nanocrystals and Their Enhanced Visibleâ€Light Photocatalytic Activity. Chemistry - A European Journal, 2013, 19, 2433-2441.	1.7	147
74	Controllable microwave and ultrasonic wave combined synthesis of ZnO micro-/nanostructures in HEPES solution and their shape-dependent photocatalytic activities. Journal of Alloys and Compounds, 2013, 567, 1-9.	2.8	38
75	Zn _{1–<i>x</i>} Cd _{<i>x</i>} S Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H ₂ -Production Activity. ACS Catalysis, 2013, 3, 882-889.	5.5	565
76	New insight into the enhanced visible-light photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles. Physical Chemistry Chemical Physics, 2013, 15, 12040.	1.3	148
77	Visible Light Photocatalytic H ₂ -Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer. Nano Letters, 2011, 11, 4774-4779.	4.5	846
78	Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 2011, 133, 10878-10884.	6.6	2,260
79	Hydrothermal Synthesis and Properties of Controlled αâ€Fe ₂ O ₃ Nanostructures in HEPES Solution. Chemistry - an Asian Journal, 2011, 6, 2320-2331.	1.7	21