
Antonino Gulino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5674235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A solar photothermocatalytic approach for the CO2 conversion: Investigation of different synergisms on CoO-CuO/brookite TiO2-CeO2 catalysts. Chemical Engineering Journal, 2022, 428, 131249.	6.6	39
2	Gold nanoelectrode arrays dewetted onto graphene paper for selective and direct electrochemical determination of glyphosate in drinking water. Sensing and Bio-Sensing Research, 2022, 36, 100496.	2.2	10
3	Removal of Phthalates from Water by Unconventional Laâ€based/WO ₃ Photocatalysts. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	5
4	3D Printing Manufacturing of Polydimethyl-Siloxane/Zinc Oxide Micro-Optofluidic Device for Two-Phase Flows Control. Polymers, 2022, 14, 2113.	2.0	3
5	Electro-Sorption of Hydrogen by Platinum, Palladium and Bimetallic Pt-Pd Nanoelectrode Arrays Synthesized by Pulsed Laser Ablation. Micromachines, 2022, 13, 963.	1.4	4
6	Systematic Characterization of Plasma-Etched Trenches on 4H-SiC Wafers. ACS Omega, 2021, 6, 20667-20675.	1.6	5
7	Characterization of the defect density states in MoOx for c-Si solar cell applications. Solid-State Electronics, 2021, 185, 108135.	0.8	3
8	Synthesis, Characterization and Photocatalytic Behavior of SiO 2 @nitrizedâ€īiO 2 Nanocomposites Obtained by a Straightforward Novel Approach. ChemistryOpen, 2021, 10, 1033-1040.	0.9	6
9	Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts. Chemical Engineering Journal, 2020, 379, 122309.	6.6	124
10	Exploring the Photothermo-Catalytic Performance of Brookite TiO2-CeO2 Composites. Catalysts, 2020, 10, 765.	1.6	34
11	Covalently Conjugated Gold–Porphyrin Nanostructures. Nanomaterials, 2020, 10, 1644.	1.9	14
12	Sub-gap defect density characterization of molybdenum oxide: An annealing study for solar cell applications. Nano Research, 2020, 13, 3416-3424.	5.8	17
13	Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles. Molecules, 2020, 25, 5731.	1.7	17
14	Eco-Friendly 1,3-Dipolar Cycloaddition Reactions on Graphene Quantum Dots in Natural Deep Eutectic Solvent. Nanomaterials, 2020, 10, 2549.	1.9	30
15	Molecularly imprinted N-doped TiO2 photocatalysts for the selective degradation of o-phenylphenol fungicide from water. Materials Science in Semiconductor Processing, 2020, 112, 105019.	1.9	54
16	High-Performing Au-Ag Bimetallic Catalysts Supported on Macro-Mesoporous CeO2 for Preferential Oxidation of CO in H2-Rich Gases. Catalysts, 2020, 10, 49.	1.6	18
17	Optimization of ZnO Nanorods Growth on Polyetheresulfone Electrospun Mats to Promote Antibacterial Properties. Molecules, 2020, 25, 1696.	1.7	23
18	Fast and Efficient Sun Light Photocatalytic Activity of Au_ZnO Core–Shell Nanoparticles Prepared by a One-Pot Synthesis. ACS Omega. 2019. 4. 15061-15066.	1.6	28

#	Article	IF	CITATIONS
19	Polyethersulfone Mats Functionalized with Porphyrin for Removal of Para-nitroaniline from Aqueous Solution. Molecules, 2019, 24, 3344.	1.7	26
20	Supramolecular Detection of a Nerve Agent Simulant by Fluorescent Zn–Salen Oligomer Receptors. Molecules, 2019, 24, 2160.	1.7	22
21	Multitopic Supramolecular Detection of Chemical Warfare Agents by Fluorescent Sensors. ACS Omega, 2019, 4, 7550-7555.	1.6	31
22	Role of the surface composition of the polyethersulfone–TiiP–H2T4 fibers on lead removal: from electrostatic to coordinative binding. Journal of Materials Science, 2019, 54, 8023-8033.	1.7	19
23	High-Mobility Hydrogenated Fluorine-Doped Indium Oxide Film for Passivating Contacts c-Si Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 45586-45595.	4.0	21
24	Hydrogenated black-TiOx: A facile and scalable synthesis for environmental water purification. Catalysis Today, 2019, 321-322, 146-157.	2.2	26
25	One Pot Synthesis of Au_ZnO Coreâ€Shell Nanoparticles Using a Zn Complex Acting as ZnO Precursor, Capping and Reducing Agent During the Formation of Au NPs. European Journal of Inorganic Chemistry, 2018, 2018, 4659-4659.	1.0	2
26	Recognition and optical sensing of amines by a quartz-bound 7-chloro-4-quinolylazopillar[5]arene monolayer. RSC Advances, 2018, 8, 33269-33275.	1.7	6
27	One Pot Synthesis of Au_ZnO Coreâ€Shell Nanoparticles Using a Zn Complex Acting as ZnO Precursor, Capping and Reducing Agent During the Formation of Au NPs. European Journal of Inorganic Chemistry, 2018, 2018, 4678-4683.	1.0	11
28	Sb-Doped Titanium Oxide: A Rationale for Its Photocatalytic Activity for Environmental Remediation. ACS Omega, 2018, 3, 11270-11277.	1.6	30
29	Supramolecular recognition of a CWA simulant by metal–salen complexes: the first multi-topic approach. Chemical Communications, 2018, 54, 11156-11159.	2.2	28
30	Sorting of Molecular Building Blocks from Solution to Surface. Journal of the American Chemical Society, 2018, 140, 8162-8171.	6.6	10
31	Selective photodegradation of paracetamol by molecularly imprinted ZnO nanonuts. Applied Catalysis B: Environmental, 2018, 238, 509-517.	10.8	84
32	Ru–Pd Bimetallic Catalysts Supported on CeO2-MnOX Oxides as Efficient Systems for H2 Purification through CO Preferential Oxidation. Catalysts, 2018, 8, 203.	1.6	29
33	Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications. Scientific Reports, 2017, 7, 40895.	1.6	130
34	Sb-implanted ZnO ultra-thin films. Materials Science in Semiconductor Processing, 2017, 69, 32-35.	1.9	3
35	Gold nanoparticles functionalized with PEGylate uncharged porphyrins. Dyes and Pigments, 2017, 141, 225-234.	2.0	18
36	High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets. Electrochimica Acta, 2017, 241, 153-161.	2.6	93

#	Article	IF	CITATIONS
37	Conjugated Gold–Porphyrin Monolayers Assembled on Inorganic Surfaces. Chemistry - A European Journal, 2017, 23, 14937-14943.	1.7	23
38	Nerve Gas Simulant Sensing by a Uranyl–Salen Monolayer Covalently Anchored on Quartz Substrates. Chemistry - A European Journal, 2017, 23, 1576-1583.	1.7	25
39	Pyridyl substituted 4-(1,3-Dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-benzamides with aggregation enhanced emission and multi-stimuli-responsive properties. Journal of Luminescence, 2017, 182, 274-282.	1.5	14
40	Reply to the â€~Comment on "A photoelectron spectroscopy study of lava stonesâ€â€™ by M. Zappia and A. Nicoletti, Anal. Methods, 2016, 8, DOI: 10.1039/c3ay41326h. Analytical Methods, 2016, 8, 3849-3849.	1.3	0
41	Selective oxidation of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: An investigation on the role of the support and the Ru particle size. Applied Catalysis A: General, 2016, 520, 82-91.	2.2	24
42	Communication between Discrete Nanostructures Triggered by Fine Tuning of an External Stimulus. Chemistry - A European Journal, 2016, 22, 13083-13088.	1.7	2
43	Communication between Discrete Nanostructures Triggered by Fine Tuning of an External Stimulus. Chemistry - A European Journal, 2016, 22, 12949-12949.	1.7	Ο
44	Black TiOx photocatalyst obtained by laser irradiation in water. Catalysis Communications, 2016, 84, 11-15.	1.6	42
45	Nanostructured CdO thin films for water treatments. Materials Science in Semiconductor Processing, 2016, 42, 85-88.	1.9	18
46	A chemical address for the Morse Code. Journal of Luminescence, 2016, 169, 348-352.	1.5	0
47	Solid nanoarchitecture – Cu(<scp>ii</scp>) solution: dynamics of the chemical communication. Physical Chemistry Chemical Physics, 2015, 17, 6612-6617.	1.3	5
48	The role of oxide location in HMF etherification with ethanol over sulfated ZrO2 supported on SBA-15. Journal of Catalysis, 2015, 323, 19-32.	3.1	59
49	A contact active bactericidal stainless steel via a sustainable process utilizing electrodeposition and covalent attachment in water. Green Chemistry, 2015, 17, 2344-2347.	4.6	8
50	Chromogenic Homo-Dinuclear Ruthenium(II) Monolayer as a Tunable Molecular Memory Module for Multibit Information Storage. Journal of Physical Chemistry C, 2015, 119, 5138-5145.	1.5	11
51	Spectroscopic and Morphological Characterization of Inflow Cannulas of Left Ventricular Assist Devices. ASAIO Journal, 2015, 61, 150-155.	0.9	1
52	Photoexcited Porphyrins Functionalizing TiO ₂ and SnO ₂ Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 23743-23751.	1.5	6
53	Olefin epoxidation by a (salen)Mn(iii) catalyst covalently grafted on glass beads. Catalysis Science and Technology, 2015, 5, 673-679.	2.1	28
54	A Viable Route for Lithium Ion Detection. European Journal of Inorganic Chemistry, 2014, 2014, 442-449.	1.0	16

#	Article	IF	CITATIONS
55	Surface-confined core–shell structures based on gold nanoparticles and metal–organic networks. Chemical Communications, 2014, 50, 4635-4638.	2.2	4
56	Azobenzamide-based proteomorphous objects as a light/pH-induced photoswitchable module. RSC Advances, 2014, 4, 7174.	1.7	2
57	Interfacial mass transfer by controlled multilayer disassembly. Chemical Communications, 2014, 50, 8154-8156.	2.2	4
58	A ternary memory module using low-voltage control over optical properties of metal-polypyridyl monolayers. Chemical Communications, 2014, 50, 3783-3785.	2.2	36
59	Optical properties of porphyrin–Eu-β-diketonate supramolecular nanostructures. Journal of Materials Chemistry C, 2014, 2, 5924.	2.7	10
60	Structural, Electronic, and Electrical Properties of an Undoped n-Type CdO Thin Film with High Electron Concentration. Journal of Physical Chemistry C, 2014, 118, 15019-15026.	1.5	38
61	Perovskite LaCoO3 thin films on single crystal substrates: MOCVD growth and characterization. Surface and Coatings Technology, 2013, 230, 174-179.	2.2	7
62	Composite Molecular Assemblies: Nanoscale Structural Control and Spectroelectrochemical Diversity. Journal of the American Chemical Society, 2013, 135, 16533-16544.	6.6	22
63	Europium Complex Covalently Grafted on Si(100) Surfaces, Engineered with Covalent Polystyrene Nanostructures. Journal of Physical Chemistry C, 2013, 117, 16213-16220.	1.5	12
64	Assembly of Surface-Confined Homochiral Helicates: Chiral Discrimination of DOPA and Unidirectional Charge Transfer. Journal of the American Chemical Society, 2013, 135, 17052-17059.	6.6	52
65	Functionalization of SnO ₂ Crystals with a Covalentlyâ€Assembled Porphyrin Monolayer. ChemSusChem, 2013, 6, 1031-1036.	3.6	8
66	Long range order in Si(100) surfaces engineered with porphyrin nanostructures. Journal of Materials Chemistry C, 2013, 1, 4979.	2.7	12
67	A photoelectron spectroscopy study of lava stones. Analytical Methods, 2013, 5, 3458-3462.	1.3	7
68	Covalent poly(methyl methacrylate) nanostructures on functionalized Si(100) surfaces. RSC Advances, 2013, 3, 1137-1144.	1.7	9
69	Structural and electronic characterization of self-assembled molecular nanoarchitectures by X-ray photoelectron spectroscopy. Analytical and Bioanalytical Chemistry, 2013, 405, 1479-1495.	1.9	85
70	Durable contact active antimicrobial materials formed by a one-step covalent modification of polyvinyl alcohol, cellulose and glass surfaces. Colloids and Surfaces B: Biointerfaces, 2013, 112, 356-361.	2.5	45
71	Fascinating Role of the Number of f Electrons in Dipolar and Octupolar Contributions to Quadratic Hyperpolarizability of Trinuclear Lanthanides-Biscopper Schiff Base Complexes. Inorganic Chemistry, 2013, 52, 7550-7556.	1.9	10
72	Structural, Electronic, and Electrical Properties of Y-Doped Cd ₂ SnO ₄ . Journal of Physical Chemistry C, 2012, 116, 3363-3368.	1.5	10

#	Article	IF	CITATIONS
73	A surface-confined Oî€MnV(salen) oxene catalyst and high turnover values in asymmetric epoxidation of unfunctionalized olefins. Journal of Materials Chemistry, 2012, 22, 20561.	6.7	26
74	Sensing of linear alkylammonium ions by a 5-pyrenoylamido-calix[5]arene solution and monolayer using luminescence measurements. Journal of Materials Chemistry, 2012, 22, 675-683.	6.7	21
75	Properties of uncharged water-soluble tetra(ω-methoxypolyethyleneoxy)phthalocyanine free base: Viable switching of the optical response by means of H3O+ ions. Journal of Luminescence, 2012, 132, 409-413.	1.5	5
76	DNA immobilization, delivery and cleavage on solid supports. Journal of Materials Chemistry, 2011, 21, 10602.	6.7	26
77	Si(111) Surface Engineered with Ordered Nanostructures by an Atom Transfer Radical Polymerization. Journal of Physical Chemistry C, 2011, 115, 12293-12298.	1.5	14
78	Pathwayâ€Dependent Selfâ€Assembly of Perylene Diimide/Peptide Conjugates in Aqueous Medium. Chemistry - A European Journal, 2011, 17, 6068-6075.	1.7	171
79	Multistep Anchoring Route of Luminescent (5-Amino-1,10-phenanthroline)tris(dibenzoylmethane)europium(III) on Si(100). European Journal of Inorganic Chemistry, 2010, 2010, 4121-4129.	1.0	17
80	Luminescence of a Ruthenium Complex Monolayer, Covalently Assembled on Silica Substrates, upon CO Exposure. Journal of Physical Chemistry C, 2010, 114, 13459-13464.	1.5	17
81	Linear vs Exponential Formation of Molecular-Based Assemblies. Journal of the American Chemical Society, 2010, 132, 9295-9297.	6.6	57
82	Electrochemical Characteristics of a Self-Propagating Molecular-Based Assembly. Journal of Physical Chemistry B, 2010, 114, 14283-14286.	1.2	27
83	Stepwise Assembly of Coordination-Based Metalâ~'Organic Networks. Journal of the American Chemical Society, 2010, 132, 14554-14561.	6.6	57
84	Optical Recognition of n-Butylammonium and 1,5-Pentanediammonium Picrates by a Calix[5]arene Monolayer Covalently Assembled on Silica Substrates. Chemistry of Materials, 2010, 22, 2829-2834.	3.2	32
85	Viable route for switching of an engineered silica surface using Cu2+ ions at sub-ppm levels. Analyst, The, 2010, 135, 2273.	1.7	23
86	Very fast CO2 response and hydrophobic properties of novel poly(ionic liquid)s. Journal of Materials Chemistry, 2009, 19, 8861.	6.7	48
87	X-ray Photoelectron Spectroscopy: A Powerful Tool for Electronic and Structural Investigations of Covalently Assembled Monolayers. A Representative Case Study. Journal of Physical Chemistry C, 2009, 113, 13558-13564.	1.5	16
88	Viable Route for Cobalt Oxideâ^'Carbon Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 15533-15537.	1.5	18
89	Tunable luminescent properties of a europium complex monolayer. Journal of Materials Chemistry, 2009, 19, 3507.	6.7	36
90	NO2 sensing ability of a monolayer of cobalt(II) porphyrin molecules covalently assembled on a engineered silica substrate. Inorganica Chimica Acta, 2008, 361, 3877-3881.	1.2	20

#	Article	IF	CITATIONS
91	Self-Propagating Assembly of a Molecular-Based Multilayer. Journal of the American Chemical Society, 2008, 130, 8913-8915.	6.6	78
92	Selective monitoring of parts per million levels of CO by covalently immobilized metal complexes on glass. Chemical Communications, 2008, , 2900.	2.2	55
93	Reversible photoswitching of stimuli-responsive Si(100) surfaces engineered with an assembled 1-cyano-1-phenyl-2-[4′-(10-undecenyloxy)phenyl]-ethylene monolayer. Journal of Materials Chemistry, 2008, 18, 5011.	6.7	41
94	Substrate-Free, Self-Standing ZnO Thin Films. Journal of Physical Chemistry C, 2008, 112, 13869-13872.	1.5	21
95	Selective NOx optical sensing with surface-confined osmium polypyridyl complexes. Chemical Communications, 2007, , 4878.	2.2	43
96	Viable Synthetic Route for a Luminescent Porphyrin Monolayer Covalently Assembled on a Molecularly Engineered Si(100) Surface. Chemistry of Materials, 2007, 19, 5102-5109.	3.2	33
97	Spectroscopic and Morphological Investigation of an Optical pH Meter Based on a Porphyrin Monolayer Covalently Assembled on a Engineered Silica Surface. Journal of Physical Chemistry C, 2007, 111, 1373-1377.	1.5	28
98	Similarities and Differences among Monolayers of a Free Base Porphyrin and Its Copper Complex: Synthesis and Characterization of a Luminescent Copper(II) Porphyrin Monolayer. Journal of Physical Chemistry C, 2007, 111, 14125-14130.	1.5	23
99	Spectroscopic and Microscopic Characterization and Behavior of an Optical pH Meter Based on a Functional Hybrid Monolayer Molecular System:Â Porphyrin Molecules Covalently Assembled on a Molecularly Engineered Silica Surface. Chemistry of Materials, 2006, 18, 2404-2410.	3.2	44
100	Photoluminescence of a Covalent Assembled Porphyrin-Based Monolayer:Â Optical Behavior in the Presence of O2. Journal of Physical Chemistry B, 2006, 110, 16781-16786.	1.2	90
101	Cobalt hexafluoroacetylacetonate polyether adducts for thin films of cobalt oxides. Inorganica Chimica Acta, 2005, 358, 4466-4472.	1.2	42
102	CdO thin films: a study of their electronic structure by electron spin resonance spectroscopy. Applied Surface Science, 2005, 245, 322-327.	3.1	35
103	An x-ray photoelectron spectra and atomic force microscopy characterization of silica substrates engineered with a covalently assembled siloxane monolayer. Nanotechnology, 2005, 16, 2170-2175.	1.3	41
104	Optical pH Meter by Means of a Porphyrin Monolayer Covalently Assembled on a Molecularly Engineered Silica Surface. Chemistry of Materials, 2005, 17, 4043-4045.	3.2	59
105	Engineered Silica Surfaces with an Assembled C60Fullerene Monolayer. Chemistry of Materials, 2005, 17, 1079-1084.	3.2	39
106	Characterization, Optical Recognition Behavior, Sensitivity, and Selectivity of Silica Surfaces Functionalized with a Porphyrin Monolayer. Chemistry of Materials, 2005, 17, 521-526.	3.2	62
107	Viable route for the synthesis of the anhydrous Co(hfac)2adduct with monoglyme: a useful precursor for thin films of CoO. Journal of Materials Chemistry, 2004, 14, 2549-2553.	6.7	29
108	Molecularly Engineered Silica Surfaces with an Assembled Porphyrin Monolayer as Optical NO2 Molecular Recognizers. Chemistry of Materials, 2004, 16, 1838-1840.	3.2	74

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Liquid MOCVD Precursors for Thin Films of Cadmium Oxide ChemInform, 2003, 34, no.	0.1	0
110	A Novel Self-generating Liquid MOCVD Precursor for Co3O4Thin Films. Chemistry of Materials, 2003, 15, 3748-3752.	3.2	96
111	Deposition of thin films of cobalt oxides by MOCVD. Journal of Materials Chemistry, 2003, 13, 861-865.	6.7	108
112	Large Third-Order Nonlinear Optical Properties of Cadmium Oxide Thin Films. Chemistry of Materials, 2003, 15, 3332-3336.	3.2	96
113	A Liquid MOCVD Precursor for Thin Films of CdO. Chemistry of Materials, 2002, 14, 1441-1444.	3.2	50
114	Synthesis and Characterization of Thin Films of Cadmium Oxide. Chemistry of Materials, 2002, 14, 704-709.	3.2	75
115	Synthesis and Characterization of Liquid MOCVD Precursors for Thin Films of Cadmium Oxide. Chemistry of Materials, 2002, 14, 4955-4962.	3.2	40
116	Deposition and Characterization of Transparent Thin Films of Zinc Oxide Doped with Bi and Sb. Chemistry of Materials, 2002, 14, 116-121.	3.2	60
117	Synthesis and Characterization of Novel Self-Generating Liquid MOCVD Precursors for Thin Films of Zinc Oxide. Chemistry of Materials, 2000, 12, 548-554.	3.2	56
118	Thin films of tetragonal zirconia with Bi doping: deposition, characterisation and thermal behaviour. Thin Solid Films, 1999, 352, 73-76.	0.8	7
119	Synthesis and spectroscopic characterisation of YÂdoped Cd2SnO4. Journal of Materials Chemistry, 1999, 9, 2837-2841.	6.7	19
120	Absolute Metalâ^'Ligand σ Bond Enthalpies in Group 4 Metallocenes. A Thermochemical, Structural, Photoelectron Spectroscopic, and ab Initio Quantum Chemical Investigation. Journal of the American Chemical Society, 1999, 121, 355-366.	6.6	47
121	Mechanically Induced Phase Transformation and Surface Segregation in Bismuthâ€Doped Tetragonal Zirconia. Journal of the American Ceramic Society, 1998, 81, 757-759.	1.9	8
122	Surface segregation and effect of mechanical stress on Sb-stabilised tetragonal zirconia. Journal of Materials Chemistry, 1997, 7, 1023-1027.	6.7	11
123	Electronic Structure of Bis(2,4-pentanedionato-O,Oâ€ [~])oxovanadium(IV). A Photoelectron Spectroscopy, Electronic Spectroscopy, and ab Initio Molecular Orbital Study. Inorganic Chemistry, 1996, 35, 3885-3890.	1.9	31
124	Influence of metal–metal bonds on electron spectra of MoO2and WO2. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2137-2141.	1.7	84
125	Low-Temperature Stabilization of Tetragonal Zirconia by Bismuth. Chemistry of Materials, 1996, 8, 1287-1291.	3.2	93
126	Low-temperature stabilisation of tetragonal zirconia by antimony. Journal of Materials Chemistry, 1996, 6, 1805.	6.7	29

#	Article	IF	CITATIONS
127	Synthesis and spectroscopic characterisation of MoO3thin films. Journal of Materials Chemistry, 1996, 6, 1335-1338.	6.7	7
128	Surface segregation of Sb in doped TiO2 rutile. Applied Surface Science, 1995, 90, 289-295.	3.1	41
129	A photoemission study of electron states in Sb-ion implanted TiO2(110). Applied Surface Science, 1995, 90, 383-387.	3.1	11
130	Comparison of the energies of vanadium donor levels in dopedSnO2andTiO2. Physical Review B, 1995, 51, 6833-6837.	1.1	34
131	Photoemission and electron-energy-loss-spectroscopy study ofBaRuO3. Physical Review B, 1995, 51, 6827-6832.	1.1	28
132	Nature of donor states in V-doped SnO2. Journal of Materials Chemistry, 1995, 5, 499.	6.7	20
133	Photoelectron Spectroscopy of f-Element Organometallic Complexes. 12. A Comparative Investigation of the Electronic Structure of Lanthanide Bis(polymethylcyclopentadienyl)hydrocarbyl Complexes by Relativistic ab Initio and DV-X.alpha. Calculations and Gas-Phase UV Photoelectron Spectroscopy. Organometallics. 1994. 13. 3810-3815.	1.1	21
134	A photoemission study of Sb-doped TiO2. Surface Science, 1994, 315, 351-361.	0.8	38
135	Zn4O(O2CNEt2)6: a further molecular model of ZnO. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 4363.	1.7	13
136	Experimental investigation of the electronic structures of enneacarbonylbis(.mu.3-X-methylidyne)triiron complexes (X = H, F, Cl, Br) by means of He I/He II gas-phase UV photoelectron spectroscopy. Inorganic Chemistry, 1993, 32, 1383-1388.	1.9	3
137	Evidence of spin crossover phenomena deduced from gas-phase photoelectron spectra of the bis[tetrakis(pyrazol-1-yl)borato]iron(II) complex. Inorganic Chemistry, 1993, 32, 3759-3761.	1.9	7
138	Photoelectron spectroscopy of f-element organometallic complexes. 10. Investigation of the electronic structure and geometry of bis(.eta.5-pentamethylcyclopentadienyl)phosphathoracyclobutane by relativistic ab initio, multipolar DV-X.alpha. calculations and gas-phase UV photoelectron spectroscopy. Organometallics, 1993, 12,	1.1	5
139	Photoelectron spectroscopy of f-element organometallic complexes. 9. A comparative fully relativistic/nonrelativistic first-principles X.alphaDVM and photoelectron spectroscopic investigation of electronic structure in homologous 4f and 5f tris(.eta.5-cyclopentadienyl)metal(IV) alkoxide complexes. Inorganic Chemistry. 1993. 32. 3873-3879.	1.9	20
140	Photoelectron spectroscopy of f element organometallic complexes. 11. An investigation of the electronic structure of some tris(.eta.5-cyclopentadienyl)thorium(IV) and -uranium(IV) complexes by relativistic effect core potential ab initio calculations and gas-phase UV photoelectron spectroscopy. The Journal of Physical Chemistry, 1993, 97, 11673-11676.	2.9	14
141	Hexakis(acetato)oxotetrazinc, a well-tailored molecular model of zinc oxide. An experimental and theoretical investigation of the electronic structure of Zn4O(acetate)6 and ZnO by means of UV and x-ray photoelectron spectroscopies and first principle local density molecular cluster calculations. Inorganic Chemistry, 1992, 31, 1558-1565.	1.9	130
142	Electronic structure of tetracoordinate transition-metal complexes. 5. Comparative theoretical ab initio/Hartree-Fock-Slater and ultraviolet-photoelectron spectroscopic studies of building blocks for low-dimensional conductors. Dibenzo[b,i][1,4,8,11]tetraazacyclotetradecine complexes of nickel(II) and palladium(II). Inorganic Chemistry, 1992, 31, 2835-2842.	1.9	11
143	Photoelectron spectroscopy of f-element organometallic complexes. 8. DV-X.alpha. and gas-phase UV photoelectron spectroscopic investigation of the electronic structure of tris(.eta.5-cyclopentadienyl)uranium(IV) complexes. Organometallics, 1992, 11, 3248-3257.	1.1	13
144	Synthesis, structure, and bonding properties of a new volatile [N-tert-butyl(1H-pyrrol-2-ylmethylene)aminato]thallium(I) complex. Inorganic Chemistry, 1992, 31, 1641-1644.	1.9	4

#	Article	IF	CITATIONS
145	Combined DV-X.alpha. and gas-phase UV photoelectron spectroscopic investigation of the electronic structures of tetravalent titanium, zirconium, molybdenum, and thorium 1-sila-3-metallacyclobutane metallocene complexes. Organometallics, 1992, 11, 1727-1737.	1.1	17
146	Experimental and theoretical investigation of the electronic structure of two isoelectronic binuclear clusters. UV-PES and DV-X.alpha. study of ruthenium ethanediyldiamido carbonyl, Ru2(CO)6[.mu.,.mu.'-N(R)CH2CH2N(R)], and iron ruthenium ethanediyldiamido carbonyl, FeRu(CO)6[.mu.,.mu.'-N(R)CH2CH2N(R)]. Inorganic Chemistry, 1991, 30, 1906-1911.	1.9	6
147	Electronic structure of transition-metal tetracoordinated complexes. 4. Theoretical ab initio and UV-photoelectron spectroscopy study of nickel(II) and palladium(II) complexes of N,N′-1,3-propaneaminebis(1H-pyrrol-2-ylmethylene) Schiff base. Inorganica Chimica Acta, 1990, 177, 225-231.	1.2	2
148	UV photoelectron spectra, reduction potentials and MO calculations of intramolecularly hydrogen-bonded naphtoquinones. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1990, 87, 317-330.	0.2	8
149	An investigation of the electronic structure of bis(.eta.5-cyclopentadienyl) dicarbonyl complexes of titanium(II) and zirconium(II). Discrete variational X.alpha. calculation and gas-phase photoelectron spectroscopy. Organometallics, 1989, 8, 900-906.	1.1	12
150	Efficient synthesis, redox characteristics, and electronic structure of a tetravalent tris(cyclopentadienyl)cerium alkoxide complex. Organometallics, 1988, 7, 2360-2364.	1.1	62
151	A DV-Xα theoretical investigation of the electronic structure of some tris(cyclopentadienyl) complexes of LI(IV). Inorganica Chimica Acta, 1986, 121, L23-L25	1.2	7