Julia Sanz-Aparicio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5674040/publications.pdf

Version: 2024-02-01

117571 189801 3,133 132 34 50 citations h-index g-index papers 132 132 132 3590 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crystal structure of a family <scp>VIII</scp> βâ€lactamase fold hydrolase reveals the molecular mechanism for its broad substrate scope. FEBS Journal, 2022, 289, 6714-6730.	2.2	1
2	Structure–Function Insights into the Fungal Endo-Chitinase Chit33 Depict its Mechanism on Chitinous Material. International Journal of Molecular Sciences, 2022, 23, 7599.	1.8	7
3	Phylogenetic, functional and structural characterization of a GH10 xylanase active at extreme conditions of temperature and alkalinity. Computational and Structural Biotechnology Journal, 2021, 19, 2676-2686.	1.9	8
4	Structure and evolutionary trace-assisted screening of a residue swapping the substrate ambiguity and chiral specificity in an esterase. Computational and Structural Biotechnology Journal, 2021, 19, 2307-2317.	1.9	6
5	New insights into the molecular mechanism behind mannitol and erythritol fructosylation by \hat{l}^2 -fructofuranosidase from Schwanniomyces occidentalis. Scientific Reports, 2021, 11, 7158.	1.6	5
6	Enzymatic Synthesis of Phloretin αâ€Glucosides Using a Sucrose Phosphorylase Mutant and its Effect on Solubility, Antioxidant Properties and Skin Absorption. Advanced Synthesis and Catalysis, 2021, 363, 3079-3089.	2.1	10
7	Structural inspection and protein motions modelling of a fungal glycoside hydrolase family 18 chitinase by crystallography depicts a dynamic enzymatic mechanism. Computational and Structural Biotechnology Journal, 2021, 19, 5466-5478.	1.9	9
8	The cryo-EM Structure of Thermotoga maritima \hat{l}^2 -Galactosidase: Quaternary Structure Guides Protein Engineering. ACS Chemical Biology, 2020, 15, 179-188.	1.6	14
9	Catalytic Cycle of Glycoside Hydrolase BglX from <i>Pseudomonas aeruginosa</i> and Its Implications for Biofilm Formation. ACS Chemical Biology, 2020, 15, 189-196.	1.6	11
10	Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis. Nature Catalysis, 2020, 3, 319-328.	16.1	90
11	Tuning the Properties of Natural Promiscuous Enzymes by Engineering Their Nano-environment. ACS Nano, 2020, 14, 17652-17664.	7.3	22
12	Structural analysis of the reducingâ€end xyloseâ€releasing exoâ€oligoxylanase Rex8A from PaenibacillusÂbarcinonensis BPâ€23 deciphers its molecular specificity. FEBS Journal, 2020, 287, 5362-5374.	2.2	8
13	Structural basis of the inhibition of GH1 \hat{l}^2 -glucosidases by multivalent pyrrolidine iminosugars. Bioorganic Chemistry, 2019, 89, 103026.	2.0	12
14	Deciphering the molecular specificity of phenolic compounds as inhibitors or glycosyl acceptors of β-fructofuranosidase from Xanthophyllomyces dendrorhous. Scientific Reports, 2019, 9, 17441.	1.6	5
15	Yeast cultures expressing the Ffase from Schwanniomyces occidentalis, a simple system to produce the potential prebiotic sugar 6-kestose. Applied Microbiology and Biotechnology, 2019, 103, 279-289.	1.7	17
16	Structural Insights into the Substrate Promiscuity of a Laboratory-Evolved Peroxygenase. ACS Chemical Biology, 2018, 13, 3259-3268.	1.6	41
17	Fructosylation of Hydroxytyrosol by the βâ€Fructofuranosidase from Xanthophyllomyces dendrorhous : Insights into the Molecular Basis of the Enzyme Specificity. ChemCatChem, 2018, 10, 4878-4887.	1.8	14
18	Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microbial Cell Factories, 2018, 17, 47.	1.9	58

#	Article	IF	Citations
19	Structural features of <i>Aspergillus niger</i> βâ€galactosidase define its activity against glycoside linkages. FEBS Journal, 2017, 284, 1815-1829.	2.2	25
20	Crystallization and Preliminary X-Ray Diffraction Analysis of a Mammal Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase. Protein Journal, 2017, 36, 240-248.	0.7	3
21	The crystal structure of mammalian inositol 1,3,4,5,6-pentakisphosphate 2-kinase reveals a new zinc-binding site and key features for protein function. Journal of Biological Chemistry, 2017, 292, 10534-10548.	1.6	8
22	Structural Analysis of \hat{l}^2 -Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity. Journal of Biological Chemistry, 2016, 291, 6843-6857.	1.6	50
23	Structural and Functional Characterization of a Ruminal \hat{I}^2 -Glycosidase Defines a Novel Subfamily of Glycoside Hydrolase Family 3 with Permuted Domain Topology. Journal of Biological Chemistry, 2016, 291, 24200-24214.	1.6	21
24	The Glycoside Hydrolase Family 8 Reducing-End Xylose-Releasing Exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 Is Active on Branched Xylooligosaccharides. Applied and Environmental Microbiology, 2016, 82, 5116-5124.	1.4	27
25	Molecular characterization and heterologous expression of a Xanthophyllomyces dendrorhous \hat{l}_{\pm} -glucosidase with potential for prebiotics production. Applied Microbiology and Biotechnology, 2016, 100, 3125-3135.	1.7	20
26	The legacy of women to crystallography. Arbor, 2015, 191, a216.	0.1	1
27	Crystallization and preliminary X-ray diffraction analysis of the N-terminal domain ofPaenibacillus barcinonensisxylanase 10C containing the CBM22-1–CBM22-2 tandem. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 136-140.	0.4	1
28	Exploring Multimodularity in Plant Cell Wall Deconstruction. Journal of Biological Chemistry, 2015, 290, 17116-17130.	1.6	19
29	A new calmodulin-binding motif for inositol 1,4,5-trisphosphate 3-kinase regulation. Biochemical Journal, 2014, 463, 319-328.	1.7	8
30	Crystallization and preliminary X-ray diffraction data of \hat{l}^2 -galactosidase from < i>Aspergillus niger < /i>Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1529-1531.	0.4	4
31	Structural Analysis of Glucuronoxylan-specific Xyn30D and Its Attached CBM35 Domain Gives Insights into the Role of Modularity in Specificity*. Journal of Biological Chemistry, 2014, 289, 31088-31101.	1.6	32
32	Crystallization and preliminary X-ray diffraction analysis of Xyn30D fromPaenibacillus barcinonensis. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 963-966.	0.4	2
33	Synthesis of 6â€Kestose using an Efficient βâ€Fructofuranosidase Engineered by Directed Evolution. Advanced Synthesis and Catalysis, 2013, 355, 1698-1702.	2.1	17
34	Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage i-29 DNA mimic protein p56. Nucleic Acids Research, 2013, 41, 6761-6773.	6.5	23
35	Three-dimensional Structure of Saccharomyces Invertase. Journal of Biological Chemistry, 2013, 288, 9755-9766.	1.6	81
36	Conformational Changes in Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase upon Substrate Binding. Journal of Biological Chemistry, 2012, 287, 29237-29249.	1.6	13

#	Article	IF	CITATIONS
37	Structural and Kinetic Insights Reveal That the Amino Acid Pair Gln-228/Asn-254 Modulates the Transfructosylating Specificity of Schwanniomyces occidentalis β-Fructofuranosidase, an Enzyme That Produces Prebiotics. Journal of Biological Chemistry, 2012, 287, 19674-19686.	1.6	39
38	Structural basis of specificity in tetrameric Kluyveromyces lactis \hat{l}^2 -galactosidase. Journal of Structural Biology, 2012, 177, 392-401.	1.3	88
39	Crystallization and preliminary X-ray diffraction analysis of the invertase fromSaccharomyces cerevisiae. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1538-1541.	0.7	5
40	NADP+ Binding to the Regulatory Subunit of Methionine Adenosyltransferase II Increases Intersubunit Binding Affinity in the Hetero-Trimer. PLoS ONE, 2012, 7, e50329.	1.1	17
41	An analysis of subdomain orientation, conformational change and disorder in relation to crystal packing of aspartic proteinases. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 541-552.	2.5	7
42	Expression, purification, crystallization and preliminary X-ray diffraction analysis of the apo form of InsP52-K fromArabidopsis thaliana. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 701-704.	0.7	2
43	Fructo-Oligosaccharide Synthesis by Mutant Versions of Saccharomyces cerevisiae Invertase. Applied and Environmental Microbiology, 2011, 77, 6148-6157.	1.4	63
44	Crystallization and preliminary X-ray diffraction data of α-galactosidase from <i>Saccharomyces cerevisiae </i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 44-47.	0.7	2
45	Crystallization and preliminary X-ray diffraction analysis of inositol 1,3,4,5,6-pentakisphosphate kinase fromArabidopsis thaliana. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 102-106.	0.7	4
46	Crystallization and preliminary X-ray crystallographic analysis of \hat{l}^2 -galactosidase from <i> Kluyveromyces lactis < /i > . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 297-300.</i>	0.7	9
47	Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from (i>Xanthophyllomyces dendrorhous (i>). Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1441-1444.	0.7	6
48	Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9608-9613.	3.3	46
49	Structural and Kinetic Analysis of Schwanniomyces occidentalis Invertase Reveals a New Oligomerization Pattern and the Role of Its Supplementary Domain in Substrate Binding. Journal of Biological Chemistry, 2010, 285, 13930-13941.	1.6	71
50	Structural Insights into the Specificity of Xyn10B from Paenibacillus barcinonensis and Its Improved Stability by Forced Protein Evolution. Journal of Biological Chemistry, 2010, 285, 2721-2733.	1.6	47
51	New Insights into the Fructosyltransferase Activity of <i> Schwanniomyces occidentalis < /i > β-Fructofuranosidase, Emerging from Nonconventional Codon Usage and Directed Mutation. Applied and Environmental Microbiology, 2010, 76, 7491-7499.</i>	1.4	37
52	Structural Analysis of Saccharomyces cerevisiae α-Galactosidase and Its Complexes with Natural Substrates Reveals New Insights into Substrate Specificity of GH27 Glycosidases. Journal of Biological Chemistry, 2010, 285, 28020-28033.	1.6	36
53	Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from <i>Schwanniomyces occidentalis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1162-1165.	0.7	7
54	Xylanases: Molecular Properties and Applications. , 2007, , 65-82.		21

#	Article	IF	CITATIONS
55	Crystal Structures of Paenibacillus polymyxa β-Glucosidase B Complexes Reveal the Molecular Basis of Substrate Specificity and Give New Insights into the Catalytic Machinery of Family I Glycosidases. Journal of Molecular Biology, 2007, 371, 1204-1218.	2.0	106
56	Comparative Study and Mutational Analysis of Distinctive Structural Elements of Hyperthermophilic Enzymes. Protein Journal, 2007, 26, 435-444.	0.7	6
57	Structural study of $(\hat{A}\pm)$ ethyl 3-acyloxy-1-azabicyclo[2.2.2]octane-3-carboxylates by 1H, 13C NMR spectroscopy, X-ray crystallography and DFT calculations. Journal of Molecular Structure, 2006, 789, 71-80.	1.8	0
58	Rat liver betaine–homocysteine S-methyltransferase equilibrium unfolding: insights into intermediate structure through tryptophan substitutions. Biochemical Journal, 2005, 391, 589-599.	1.7	8
59	Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger. FEBS Journal, 2005, 272, 4362-4371.	2.2	59
60	Structural analysis of interactions for complex formation between Ferredoxin-NADP+ reductase and its protein partners. Proteins: Structure, Function and Bioinformatics, 2005, 59, 592-602.	1.5	24
61	C-Terminal Tyrosine of Ferredoxinâ^'NADP+ Reductase in Hydride Transfer Processes with NAD(P)+/H. Biochemistry, 2005, 44, 13477-13490.	1.2	51
62	The Crystal Structure of Feruloyl Esterase A from Aspergillus niger Suggests Evolutive Functional Convergence in Feruloyl Esterase Family. Journal of Molecular Biology, 2004, 338, 495-506.	2.0	110
63	Crystal Structure of Rat Liver Betaine Homocysteine S-Methyltransferase Reveals New Oligomerization Features and Conformational Changes Upon Substrate Binding. Journal of Molecular Biology, 2004, 338, 771-782.	2.0	38
64	Structural study of $(\hat{A}\pm)$ alkyl 3-hydroxy-1-azabicyclo [2.2.2] octane-3-carboxylates. Journal of Molecular Structure, 2003, 644, 171-179.	1.8	4
65	Crystal Structures of Methionine Adenosyltransferase Complexed with Substrates and Products Reveal the Methionine-ATP Recognition and Give Insights into the Catalytic Mechanism. Journal of Molecular Biology, 2003, 331, 407-416.	2.0	47
66	Involvement of the Pyrophosphate and the 2′-Phosphate Binding Regions of Ferredoxin-NADP+ Reductase in Coenzyme Specificity. Journal of Biological Chemistry, 2003, 278, 49203-49214.	1.6	34
67	Active-site-mutagenesis study of rat liver betaine-homocysteine S-methyltransferase. Biochemical Journal, 2003, 370, 945-952.	1.7	20
68	Mechanism of Coenzyme Recognition and Binding Revealed by Crystal Structure Analysis of Ferredoxin–NADP+ Reductase Complexed with NADP+. Journal of Molecular Biology, 2002, 319, 1133-1142.	2.0	73
69	Crystallization and preliminary X-ray study of recombinant betaine–homocysteineS-methyltransferase from rat liver. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1507-1510.	2.5	9
70	Probing the role of glutamic acid 139 of Anabaena ferredox in NADP+reductase in the interaction with substrates. FEBS Journal, 2002, 269, 4938-4947.	0.2	10
71	Role of a Cluster of Hydrophobic Residues Near the FAD Cofactor in Anabaena PCC 7119 Ferredoxin-NADP+Reductase for Optimal Complex Formation and Electron Transfer to Ferredoxin. Journal of Biological Chemistry, 2001, 276, 27498-27510.	1.6	37
72	Probing the Determinants of Coenzyme Specificity in Ferredoxin-NADP+ Reductase by Site-directed Mutagenesis. Journal of Biological Chemistry, 2001, 276, 11902-11912.	1.6	54

#	Article	IF	Citations
73	Structural basis of the catalytic role of Glu301 inAnabaena PCC 7119 ferredoxin-NADP+ reductase revealed by x-ray crystallography. , 2000, 38, 60-69.		18
74	Directed Evolution of \hat{l}^2 -Glucosidase A from Paenibacillus polymyxa to Thermal Resistance. Journal of Biological Chemistry, 2000, 275, 13708-13712.	1.6	76
75	The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site 1 1Edited by R. Huber. Journal of Molecular Biology, 2000, 300, 363-375.	2.0	72
76	Structural basis of the catalytic role of Glu301 in Anabaena PCC 7119 ferredoxin-NADP+ reductase revealed by x-ray crystallography. Proteins: Structure, Function and Bioinformatics, 2000, 38, 60.	1.5	2
77	Iridium–fluorobenzenethiolato complexes: crystal structures of [Ir(SC6F5)(CO)(PPh3)2], [Ir3(μ-SC6F5)3(μ-CO)(CO)4(PPh3)2] and [Ir(SC6F5)(Î-O2)(CO)(PPh3)2]. Polyhedron, 1999, 18, 959-968.	1.0	7
78	Structural basis of increased resistance to thermal denaturation induced by single amino acid substitution in the sequence of \hat{l}^2 -glucosidase A fromBacillus polymyxa., 1998, 33, 567-576.		26
79	Role of Arg100 and Arg264 fromAnabaenaPCC 7119 Ferredoxinâ^'NADP+Reductase for Optimal NADP+Binding and Electron Transferâ€. Biochemistry, 1998, 37, 17680-17691.	1.2	48
80	A Generalized and Efficient Preparation of a Novel Class of Macrocyclic Bis(guanidines) from Cyclic Bis(carbodiimides). Journal of Organic Chemistry, 1998, 63, 2922-2927.	1.7	17
81	Crystal structure of \hat{l}^2 -glucosidase A from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases. Journal of Molecular Biology, 1998, 275, 491-502.	2.0	166
82	The crystal structure of Canavalia brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from Concanavalin A. FEBS Letters, 1997, 405, 114-118.	1.3	79
83	10H+-2,3-Benzo-1,4-dioxa-7,10,13-triazacyclopentadec-2-ene-6,14-dione Picrate Hydrate (1/1/1). Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 799-801.	0.4	4
84	Purification, Crystallization and Preliminary X-ray Diffraction Studies of C-Phycocyanin and Allophycocyanin fromSpirulina platensis. Acta Crystallographica Section D: Biological Crystallography, 1997, 53, 321-326.	2.5	14
85	2,3-Benzo-11-(2-cyanoethyl)-1,4-dioxa-7,11,15-triazacycloheptadec-2-ene-6,16-dione–Water (1/1). Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 1459-1462.	0.4	1
86	Synthesis and Structural, Conformational, Biochemical, and Pharmacological Study of New Compounds Derived from Tropane-3-spiro-4'(5')-imidazoline as Potential 5-HT3 Receptor Antagonists. Journal of Pharmaceutical Sciences, 1995, 84, 101-106.	1.6	13
87	Structural, conformational, theoretical and pharmacological study of some amides derived from 3,7-dimethyl-9-[(N-substituted)-4-chlorobenzamido]3,7-diazabicyclo[3.3.1]nonane-9-carboxamide. Journal of Molecular Structure, 1995, 351, 137-146.	1.8	2
88	Structural, conformational and pharmacological study of some esters derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9β-ol. Journal of Molecular Structure, 1995, 351, 119-125.	1.8	9
89	Remarkable effect of amide substituents on molecular organisation of silver selective pyridine-diamide-diester receptors. Tetrahedron Letters, 1995, 36, 9543-9546.	0.7	8
90	Synthesis and structure of new substituted 2-dicyanomethylene-1,2-dihydropyridines. Journal of Heterocyclic Chemistry, 1995, 32, 29-32.	1.4	10

#	Article	IF	CITATIONS
91	Synthesis, Structure, and Pharmacological Evaluation of the Stereoisomers of Furnidipine. Journal of Medicinal Chemistry, 1995, 38, 2830-2841.	2.9	47
92	1-Aminocyclohexene-2,4-dicarbonitrile derivatives. Syntheses and structural study. Canadian Journal of Chemistry, 1995, 73, 1546-1555.	0.6	36
93	Synthesis and Structure of New Pyrido[2,3-d]pyrimidine Derivatives with Calcium Channel Antagonist Activity. Tetrahedron, 1994, 50, 8085-8098.	1.0	93
94	Synthesis and structural and conformational study of 3,7-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-one oxime and its tautomer imine N-oxide. Journal of Molecular Structure, 1994, 323, 85-91.	1.8	10
95	Addition compounds of dichlorodioxomolybdenum(VI) from hydrochloric acid solutions of molybdenum trioxide. Crystal structure of dichlorodioxodiaquamolybdenum(VI) bis(2,5,8-trioxanonane). Polyhedron, 1994, 13, 2745-2749.	1.0	39
96	Crystallization and Preliminary X-ray Diffraction Analysis of a Type I β-glucosidase Encoded by the bgIA Gene of Bacillus polymyxa. Journal of Molecular Biology, 1994, 240, 267-270.	2.0	12
97	Dalton communication. New diiridium(I) and diiridium(I,III) complexes containing thiolate ligands. Crystal structures of [(cod)Cl(SC6F5)Ir(Âμ-SC6F5)2Ir(cod)] and [{Ir(Âμ-SC6F5)(CO)2}2](cod =) Tj ETQq1 1 0.784	43 1.4 rgBT	
98	Conformational Study of 2,4-Diaryl-3-azabicyclo[3.3.1]nonan-9-ones and Their 3-Methyl Derivatives by Quantum Mechanical Calculations, NMR, and X-ray Crystallography. Journal of Organic Chemistry, 1994, 59, 2565-2569.	1.7	13
99	Metallic Carbonyl Complexes Containing Heterocycle Nitrogen Ligands. 2. Tricarbonylbromo(3,3'-R-2,2'-biquinoline)Rhenium(I) Compounds. Inorganic Chemistry, 1994, 33, 2341-2346.	1.9	87
100	Synthesis and Structural, Biochemical, and Pharmacological Study of 30-Acyloxy-3a-methoxycarbonyltropane Derivatives. Journal of Pharmaceutical Sciences, 1993, 82, 794-798.	1.6	4
101	Structural and conformational study of 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9α-ol. Journal of Molecular Structure, 1993, 293, 49-54.	1.8	3
102	Synthesis and structural, conformational and pharmacological study of some esters derived from 3-Î2-hydroxytropan-3-α-carboxylic acid. Journal of Molecular Structure, 1993, 301, 95-105.	1.8	2
103	Structural and conformational study of some N′-substituted benzoyl derivatives of the 3-β-amino-3-α-carbamoyl-N-8-substituted nortropanes. Journal of Molecular Structure, 1993, 291, 1-10.	1.8	4
104	Synthesis and chromatographic separation of the stereoisomers of furnidipine. Tetrahedron: Asymmetry, 1993, 4, 617-620.	1.8	52
105	The use of protein homologues in the rotation function. Acta Crystallographica Section A: Foundations and Advances, 1993, 49, 306-315.	0.3	3
106	Rotational dynamics of 1,6-diphenyl-1,3,5-hexatriene and derivatives from fluorescence depolarization. The Journal of Physical Chemistry, 1993, 97, 3486-3491.	2.9	35
107	Synthesis, and structural, conformational and pharmacological studies of new fentanyl derivatives of the norgranatane system. Journal of the Chemical Society Perkin Transactions II, 1992, , 687-695.	0.9	10
108	Synthesis and structural and conformational study of 3α-methoxycarbonyl-3β-(3′,4′,5′-trimethoxybenzamido)-N8-substituted nortropanes. Journal of Molecul Structure, 1992, 267, 79-86.	lar1.8	6

#	Article	IF	Citations
109	Synthesis, structural, conformational and biochemical study of some 3βâ€acyloxytropanâ€3αâ€carboxylic acid hydrochlorides. Journal of Heterocyclic Chemistry, 1992, 29, 1821-1827.	1.4	3
110	Structural study of 3-α(p-tolylamino)-N-phenethylnorgranatane. Journal of Molecular Structure, 1992, 266, 283-288.	1.8	1
111	Structural Study of Benzidamine Salicylate in the Solid State and in Solution. Journal of Pharmaceutical Sciences, 1992, 81, 94-98.	1.6	4
112	Synthesis and structural and conformational study of some esters derived from 8-α-hydroxy-3-phenethyl-3-azabicyclo [3.2.1] octan-8-β-carboxylic acid. Journal of Molecular Structure, 1991, 246, 339-357.	1.8	3
113	Structural characterization of $(\hat{A}\pm)$ -3-aryl-1-azabicyclo[2.2.2]octan-3-ols by two-dimensional NMR spectroscopy and X-Ray crystallography. I. Magnetic Resonance in Chemistry, 1991, 29, 1130-1139.	1.1	6
114	Synthesis and Structural, Conformational, and Pharmacological Study of Some Esters Derived from 3-Phenethyl- 3-azabicyclo [3.2.1] octan-8-/3-ol and the Corresponding M-Endo-methyl Quaternary Derivatives. Journal of Pharmaceutical Sciences, 1991, 80, 554-558.	1.6	10
115	Crystal and molecular structure of 6-phenyl-13H-pyrimido [4,3-b:6,1-b] bis-benzothiazolium-12 triiodide. Journal of Crystallographic and Spectroscopic Research, 1991, 21, 179-182.	0.3	0
116	Synthesis, structural, conformational and pharmacological study of N-2′-acyloxyalkylnorgranatanones. European Journal of Medicinal Chemistry, 1990, 25, 497-506.	2.6	4
117	Synthesis and structural study of dichloro di-2-benzothiazolylphenylmethanol Zinc(II). Inorganica Chimica Acta, 1990, 174, 169-173.	1.2	5
118	Early-transition-metal ketenimine complexes. Synthesis, reactivity and structural characterization of complexes with .eta.2(C,N)-ketenimine groups bound to the halobis[(trimethylsilyl)cyclopentadienyl]niobium unit. X-ray structure of Nb(.eta.5-C5H4SiMe3)2Cl(.eta.2(C,N)-PhN:C:CPh2). Organometallics, 1990, 9, 2919-2925.	1.1	35
119	Two rings in one step: a novel 1,2,4-triazolo[1,5-a]pyridone with an unusual crystal structure. Journal of Organic Chemistry, 1990, 55, 2259-2262.	1.7	9
120	Structural and spectroscopic study of condensed piperidine bicyclanols. 3-Phenethyl-3-azabicyclo[3.2.1]octan-8-α-ol. Journal of Molecular Structure, 1989, 196, 307-316.	1.8	16
121	Synthesis and structural study of tropane benzamines. Journal of Molecular Structure, 1989, 197, 59-72.	1.8	6
122	Structural and conformational study of 9-(2′-hydroxyethyl)-9-azabicyclo[3.3.1]nonan-3β-ol. Journal of Molecular Structure, 1989, 192, 15-27.	1.8	13
123	Tautomerism of Bis(2-bensothiazolyl)arylmethanes. Heterocycles, 1989, 29, 165.	0.4	6
124	Lattice-energy calculations on organometallic compounds. Acta Crystallographica Section B: Structural Science, 1988, 44, 259-262.	1.8	8
125	Preparation and structural characterization of new alkoxo- and (alkoxo)(amido)(imido)-niobium(V) compounds. Crystal structure of [NbCl(μ-OMe)[N(SiMe3)2](NSiMe3)]2. Journal of Organometallic Chemistry, 1988, 350, 25-34.	0.8	22
126	Synthesis and structural study of 9-(2′-hydroxyethyl)-9-azabicyclo[3.3.1]nonan-3α-OL. Journal of Molecular Structure, 1988, 174, 273-280.	1.8	14

#	Article	IF	CITATIONS
127	A novel ring system: 6a-aminofuro[2,3-b]furans. Journal of Organic Chemistry, 1988, 53, 5341-5343.	1.7	12
128	New tantalum ylide complexes: crystal and molecular structure of (.eta.5-C5Me5)Cl4Ta(CH2:PMePh2) containing a neutral phosphorus ylide. Organometallics, 1987, 6, 1581-1583.	1.1	18
129	Mixed oxides of the system MV-TeIV-O2 (M= Nb, Ta, Sb); II. crystal structure of Ta2Te2O9. Materials Research Bulletin, 1987, 22, 1405-1412.	2.7	5
130	Structure of dicarbonyl (\hat{i} -5-cyclopentadienyl) (O,O'-diethyl dithiophosphato) iron (II). Acta Crystallographica Section C: Crystal Structure Communications, 1987, 43, 2009-2011.	0.4	1
131	Crystal structure of (Î-5-pentamethylcyclopentadienyl) (O,O′-diisopropyldithiophosphato) (dicarbonyl)-iron(II), FeS2PO4C18H29. Zeitschrift Fur Kristallographie - Crystalline Materials, 1986, 175,	0.4	4
132	Structure of $(\hat{l}\cdot 5$ -cyclopentadienyl)(dicarbonyl)(O,O'-diisopropyl dithiophosphato)iron(II). Acta Crystallographica Section C: Crystal Structure Communications, 1986, 42, 1121-1123.	0.4	4