J V Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5672817/publications.pdf

Version: 2024-02-01

331259 329751 1,442 43 21 37 h-index citations g-index papers 47 47 47 1422 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	First Application of a Theoretically Derived Coupling Function in Cosmic-Ray Intensity for the Case of the 10 September 2017 Ground-Level Enhancement (GLE 72). Solar Physics, 2022, 297, .	1.0	0
2	Observations From NOAA's Newest Solar Proton Sensor. Space Weather, 2021, 19, e2021SW002750.	1.3	7
3	The GOES-R Space Environment In Situ Suite (SEISS): Measurement of Energetic Particles in Geospace. , 2020, , 243-250.		18
4	Very high energy proton peak flux model. Journal of Space Weather and Space Climate, 2020, 10, 24.	1.1	13
5	Development of a Bowtie Inversion Technique for Realâ€Time Processing of the GOESâ€16/â€17 SEISS MPSâ€HI Electron Channels. Space Weather, 2020, 18, e2019SW002403.	1.3	13
6	Electrodynamic Coupling Between The Atmospheric and Space Environments after an Extreme Space Weather Event. , 2020, , .		0
7	On-orbit calibration of geostationary electron and proton flux observations for augmentation of an existing empirical radiation model. Journal of Space Weather and Space Climate, 2020, 10, 28.	1.1	5
8	Extension of an Empirical Electron Flux Model From 6 to 20 Earth Radii Using Cluster/RAPID Observations. Space Weather, 2019, 17, 778-792.	1.3	11
9	Proton and Electron Injection Path at Geosynchronous Altitude. Journal of Geophysical Research: Space Physics, 2019, 124, 4083-4103.	0.8	13
10	Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss. Geophysical Research Letters, 2019, 46, 3615-3624.	1.5	37
11	Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity. Journal of Geophysical Research: Space Physics, 2019, 124, 2466-2483.	0.8	50
12	Validation of Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) With Longâ€Term GOES MAGED Measurements of keV Electron Fluxes at Geostationary Orbit. Space Weather, 2019, 17, 687-708.	1.3	17
13	Comparison of Van Allen Probes Energetic Electron Data With Corresponding GOESâ€15 Measurements: 2012–2018. Journal of Geophysical Research: Space Physics, 2019, 124, 9924-9942.	0.8	16
14	Onsets of Solar Proton Events in Satellite and Ground Level Observations: A Comparison. Space Weather, 2018, 16, 245-260.	1.3	9
15	Long‣asting Poloidal ULF Waves Observed by Multiple Satellites and High‣atitude SuperDARN Radars. Journal of Geophysical Research: Space Physics, 2018, 123, 8422-8438.	0.8	36
16	Cross Calibration of the GPS Constellation CXD Proton Data With GOES EPS. Space Weather, 2018, 16, 273-288.	1.3	9
17	Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed on and off the Magnetic Equator. Geophysical Research Letters, 2018, 45, 7918-7926.	1.5	5
18	September 2017's Geoeffective Space Weather and Impacts to Caribbean Radio Communications During Hurricane Response. Space Weather, 2018, 16, 1190-1201.	1.3	68

#	Article	IF	CITATIONS
19	Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multisatellite Measurements. Geophysical Research Letters, 2018, 45, 6755-6765.	1.5	29
20	Validation of the effect of crossâ€calibrated GOES solar proton effective energies on derived integral fluxes by comparison with STEREO observations. Space Weather, 2017, 15, 290-309.	1.3	36
21	Electron Fluxes at Geostationary Orbit From GOES MAGED Data. Space Weather, 2017, 15, 1602-1614.	1.3	24
22	Comparative analysis of NOAA REFM and SNB ³ GEO tools for the forecast of the fluxes of highâ€energy electrons at GEO. Space Weather, 2016, 14, 22-31.	1.3	26
23	Source and seed populations for relativistic electrons: Their roles in radiation belt changes. Journal of Geophysical Research: Space Physics, 2015, 120, 7240-7254.	0.8	215
24	POES MEPED differential flux retrievals and electron channel contamination correction. Journal of Geophysical Research: Space Physics, 2015, 120, 4596-4612.	0.8	41
25	The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements. Journal of Geophysical Research: Space Physics, 2015, 120, 7493-7511.	0.8	70
26	Giant pulsations on the afternoonside: Geostationary satellite and ground observations. Journal of Geophysical Research: Space Physics, 2015, 120, 8350-8367.	0.8	11
27	Extreme relativistic electron fluxes at geosynchronous orbit: Analysis of GOES <i>E</i> > 2 MeV electrons. Space Weather, 2015, 13, 170-184.	1.3	44
28	Improved Polar and Geosynchronous Satellite Data Sets Available in Common Data Format at the Coordinated Data Analysis Web. Space Weather, 2015, 13, 254-256.	1.3	9
29	Space weather conditions during the Galaxy 15 spacecraft anomaly. Space Weather, 2015, 13, 484-502.	1.3	36
30	Effects of modeled ionospheric conductance and electron loss on selfâ€consistent ring current simulations during the 5–7 April 2010 storm. Journal of Geophysical Research: Space Physics, 2015, 120, 5355-5376.	0.8	29
31	Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event. Journal of Geophysical Research: Space Physics, 2015, 120, 1924-1938.	0.8	49
32	Unraveling the drivers of the storm time radiation belt response. Geophysical Research Letters, 2015, 42, 3076-3084.	1.5	90
33	Competing source and loss mechanisms due to waveâ€particle interactions in Earth's outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2014, 119, 1960-1979.	0.8	103
34	Intercalibration of GOES 8–15 solar proton detectors. Space Weather, 2014, 12, 92-109.	1.3	56
35	Solar Energetic Particle Measurements Intercalibration Workshop, 11 April 2014. Space Weather, 2014, 12, 129-130.	1.3	1
36	Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations. Geophysical Research Letters, 2014, 41, 8722-8729.	1.5	78

#	Article	IF	CITATION
37	Electron number density, temperature, and energy density at GEO and links to the solar wind: A simple predictive capability. Journal of Geophysical Research: Space Physics, 2014, 119, 4556-4571.	0.8	15
38	Pulsating auroral electron flux modulations in the equatorial magnetosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 4884-4894.	0.8	46
39	Modeling solar proton access to geostationary spacecraft with geomagnetic cutoffs. Advances in Space Research, 2013, 52, 1939-1948.	1.2	12
40	Case studies of the impact of highâ€speed solar wind streams on the electron radiation belt at geosynchronous orbit: Flux, magnetic field, and phase space density. Journal of Geophysical Research: Space Physics, 2013, 118, 6964-6979.	0.8	15
41	Undulations in MeV solar energetic particle fluxes in Earth's magnetosphere associated with substorm magnetic field reconfigurations. Journal of Geophysical Research, 2012, 117, .	3.3	8
42	Plasma Conditions During the Galaxy 15 Anomaly and the Possibility of ESD from Subsurface Charging. , 2011, , .		33
43	The eastâ€west effect in solar proton flux measurements in geostationary orbit: A new GOES capability. Geophysical Research Letters, 2010, 37, .	1.5	35