Heather Megan Powell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5672053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanomodulation of Burn Scarring Via Pressure Therapy. Advances in Wound Care, 2022, 11, 179-191.	2.6	10
2	3D engineered human gingiva fabricated with electrospun collagen scaffolds provides a platform for in vitro analysis of gingival seal to abutment materials. PLoS ONE, 2022, 17, e0263083.	1.1	9
3	Isolation and feeder-free primary culture of four cell types from a single human skin sample. STAR Protocols, 2022, 3, 101172.	0.5	8
4	610 Myofibroblasts Are Not Characteristic Features of Keloid Lesions. Journal of Burn Care and Research, 2022, 43, S145-S145.	0.2	0
5	Advantages and Disadvantages of Using Small and Large Animals in Burn Research: Proceedings of the 2021 Research Special Interest Group. Journal of Burn Care and Research, 2022, 43, 1032-1041.	0.2	3
6	Direct comparison of reproducibility and reliability in quantitative assessments of burn scar properties. Burns, 2021, 47, 466-478.	1.1	18
7	In situ differentiation of human-induced pluripotent stem cells into functional cardiomyocytes on a coaxial PCL-gelatin nanofibrous scaffold. Materials Science and Engineering C, 2021, 118, 111354.	3.8	14
8	Coming to Consensus: What Defines Deep Partial Thickness Burn Injuries in Porcine Models?. Journal of Burn Care and Research, 2021, 42, 98-109.	0.2	15
9	Response to the Letter to the Editor: Fractional CO2 laser ablation of porcine burn scars after grafting: Is deeper better?. Burns, 2021, 47, 494-495.	1.1	0
10	Collagen-Based Electrospun Materials for Tissue Engineering: A Systematic Review. Bioengineering, 2021, 8, 39.	1.6	38
11	Electrospun Aligned Coaxial Nanofibrous Scaffold for Cardiac Repair. Methods in Molecular Biology, 2021, 2193, 129-140.	0.4	13
12	Skin Biomechanics and miRNA Expression Following Chronic UVB Irradiation. Advances in Wound Care, 2020, 9, 79-89.	2.6	15
13	Fractional CO2 laser micropatterning of cell-seeded electrospun collagen scaffolds enables rete ridge formation in 3D engineered skin. Acta Biomaterialia, 2020, 102, 287-297.	4.1	28
14	Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Annals of Surgery, 2020, 271, 1174-1185.	2.1	108
15	Fractional CO2 laser ablation of porcine burn scars after grafting: Is deeper better?. Burns, 2020, 46, 937-948.	1.1	12
16	Scalable Biomimetic Coaxial Aligned Nanofiber Cardiac Patch: A Potential Model for "Clinical Trials in a Dish― Frontiers in Bioengineering and Biotechnology, 2020, 8, 567842.	2.0	23
17	656 Inter- and Intra-user Reliability of Skin Graft Thickness as a Function of Instrument. Journal of Burn Care and Research, 2020, 41, S173-S174.	0.2	0
18	Improved Scar Outcomes with Increased Daily Duration of Pressure Garment Therapy. Advances in Wound Care, 2020, 9, 453-461.	2.6	11

#	Article	IF	CITATIONS
19	Cultured Epithelial Autograft Combined with Micropatterned Dermal Template Forms Rete Ridges <i>In Vivo</i> . Tissue Engineering - Part A, 2020, 26, 1138-1146.	1.6	19
20	Early Intervention in Ischemic Tissue with Oxygen Nanocarriers Enables Successful Implementation of Restorative Cell Therapies. Cellular and Molecular Bioengineering, 2020, 13, 435-446.	1.0	9
21	Sustained Release of Basic Fibroblast Growth Factor (bFGF) Encapsulated Polycaprolactone (PCL) Microspheres Promote Angiogenesis In Vivo. Nanomaterials, 2019, 9, 1037.	1.9	24
22	FXCO2 laser therapy of existing burn scars does not significantly improve outcomes in a porcine model. Burns Open, 2019, 3, 89-95.	0.2	3
23	Collagen VII Expression Is Required in Both Keratinocytes and Fibroblasts for Anchoring Fibril Formation in Bilayer Engineered Skin Substitutes. Cell Transplantation, 2019, 28, 1242-1256.	1.2	29
24	Survey of national and local practice of compression therapy timing for burn patients in the United States. Burns, 2019, 45, 1215-1222.	1.1	7
25	Role of Early Application of Pressure Garments following Burn Injury and Autografting. Plastic and Reconstructive Surgery, 2019, 143, 310e-321e.	0.7	19
26	Incorporation of 3D stereophotogrammetry as a reliable method for assessing scar volume in standard clinical practice. Burns, 2019, 45, 1614-1620.	1.1	11
27	Current research trends and challenges in tissue engineering for mending broken hearts. Life Sciences, 2019, 229, 233-250.	2.0	29
28	Report on Three Porcine Proof-of-concept Studies: Comparison of a Dermatome With a Rotating Excision Ring With Conventional Dermatomes for the Harvesting of Split Skin Grafts and Excision of Necrosis. Wounds, 2019, 31, 137-144.	0.2	1
29	Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue. Nature Communications, 2018, 9, 936.	5.8	132
30	Structural, Chemical, and Mechanical Properties of Pressure Garments as a Function of Simulated Use and Repeated Laundering. Journal of Burn Care and Research, 2018, 39, 562-571.	0.2	5
31	Effect of skin graft thickness on scar development in a porcine burn model. Burns, 2018, 44, 917-930.	1.1	33
32	Effects of early combinatorial treatment of autologous splitâ€ŧhickness skin grafts in red duroc pig model using pulsed dye laser and fractional CO ₂ laser. Lasers in Surgery and Medicine, 2018, 50, 78-87.	1.1	28
33	Cellular Mechanics of Primary Human Cervical Fibroblasts: Influence of Progesterone and a Pro-inflammatory Cytokine. Annals of Biomedical Engineering, 2018, 46, 197-207.	1.3	20
34	Inflammatory response and biomechanical properties of coaxial scaffolds for engineered skin in vitro and post-grafting. Acta Biomaterialia, 2018, 80, 247-257.	4.1	35
35	MRI compatibility of silver based wound dressings. Burns, 2018, 44, 1940-1946.	1.1	8
36	Early cessation of pressure garment therapy results in scar contraction and thickening. PLoS ONE, 2018. 13. e0197558.	1.1	22

HEATHER MEGAN POWELL

#	Article	IF	CITATIONS
37	Inflammatory responses, matrix remodeling, and reâ€epithelialization after fractional CO ₂ laser treatment of scars. Lasers in Surgery and Medicine, 2017, 49, 675-685.	1.1	41
38	Scar formation following excisional and burn injuries in a red Duroc pig model. Wound Repair and Regeneration, 2017, 25, 618-631.	1.5	35
39	Standardized Approach to Quantitatively Measure Residual Limb Skin Health in Individuals with Lower Limb Amputation. Advances in Wound Care, 2017, 6, 225-232.	2.6	10
40	Elevated vacuum suspension preserves residual-limb skin health in people with lower-limb amputation: Randomized clinical trial. Journal of Rehabilitation Research and Development, 2016, 53, 1121-1132.	1.6	24
41	Novel burn device for rapid, reproducible burn wound generation. Burns, 2016, 42, 384-391.	1.1	26
42	Burn Scar Biomechanics after Pressure Garment Therapy. Plastic and Reconstructive Surgery, 2015, 136, 572-581.	0.7	41
43	High-Resolution Harmonics Ultrasound Imaging for Non-Invasive Characterization of Wound Healing in a Pre-Clinical Swine Model. PLoS ONE, 2015, 10, e0122327.	1.1	34
44	Comparison of the Biological Equivalence of Two Methods for Isolating Bone Marrow Mononuclear Cells for Fabricating Tissue-Engineered Vascular Grafts. Tissue Engineering - Part C: Methods, 2015, 21, 597-604.	1.1	15
45	Mixedâ€species biofilm compromises wound healing by disrupting epidermal barrier function. Journal of Pathology, 2014, 233, 331-343.	2.1	161
46	Tunable Engineered Skin Mechanics via Coaxial Electrospun Fiber Core Diameter. Tissue Engineering - Part A, 2014, 20, 2746-2755.	1.6	26
47	Scaffold Architecture Controls Insulinoma Clustering, Viability, and Insulin Production. Tissue Engineering - Part A, 2014, 20, 1784-1793.	1.6	7
48	Loss of Myoferlin Redirects Breast Cancer Cell Motility towards Collective Migration. PLoS ONE, 2014, 9, e86110.	1.1	50
49	Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering. Tissue Engineering - Part A, 2013, 19, 1507-1518.	1.6	69
50	The effect of intravitreal bevacizumab and ranibizumab on cutaneous tensile strength during wound healing. Clinical Ophthalmology, 2013, 7, 185.	0.9	17
51	Morphogenesis and Biomechanics of Engineered Skin Cultured Under Uniaxial Strain. Advances in Wound Care, 2012, 1, 69-74.	2.6	7
52	Influence of hydration on fiber geometry in electrospun scaffolds. Acta Biomaterialia, 2012, 8, 4342-4348.	4.1	6
53	Electrospun vascular graft properties following femtosecond laser ablation. Journal of Applied Polymer Science, 2012, 124, 2513-2523.	1.3	10
54	Dehydrothermal Crosslinking of Electrospun Collagen. Tissue Engineering - Part C: Methods, 2011, 17, 9-17.	1.1	102

HEATHER MEGAN POWELL

#	Article	IF	CITATIONS
55	Vascular Wall Engineering Via Femtosecond Laser Ablation: Scaffolds with Self-Containing Smooth Muscle Cell Populations. Annals of Biomedical Engineering, 2011, 39, 3031-3041.	1.3	27
56	Regulation of electrospun scaffold stiffness via coaxial core diameter. Acta Biomaterialia, 2011, 7, 1133-1139.	4.1	41
57	Fluorescein Diacetate for Determination of Cell Viability in 3D Fibroblast–Collagen–GAG Constructs. Methods in Molecular Biology, 2011, 740, 115-126.	0.4	6
58	Hemoglobin regulates the metabolic and synthetic function of rat insulinoma cells cultured in a hollow fiber bioreactor. Biotechnology and Bioengineering, 2010, 107, 582-592.	1.7	9
59	Chondroitinâ€6â€sulfate incorporation and mechanical stimulation increase MSCâ€collagen sponge construct stiffness. Journal of Orthopaedic Research, 2010, 28, 1092-1099.	1.2	35
60	Epidermal differentiation governs engineered skin biomechanics. Journal of Biomechanics, 2010, 43, 3183-3190.	0.9	15
61	Uniaxial Strain Regulates Morphogenesis, Gene Expression, and Tissue Strength in Engineered Skin. Tissue Engineering - Part A, 2010, 16, 1083-1092.	1.6	60
62	Engineered Human Skin Fabricated Using Electrospun Collagen–PCL Blends: Morphogenesis and Mechanical Properties. Tissue Engineering - Part A, 2009, 15, 2177-2187.	1.6	232
63	Regulation of Tendon Tissue Engineered Construct Stiffness by Culture Time, Mesenchymal Stem Cells and Mechanical Stimulation. , 2009, , .		Ο
64	Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials, 2008, 29, 834-843.	5.7	230
65	Fluorescein Diacetate for Determination of Cell Viability in Tissue-Engineered Skin. Tissue Engineering - Part C: Methods, 2008, 14, 89-96.	1.1	28
66	Evaluation of a Novel Scaffold Material for Tendon Tissue Engineering. , 2007, , 1005.		0
67	Wound closure with EDC cross-linked cultured skin substitutes grafted to athymic mice. Biomaterials, 2007, 28, 1084-1092.	5.7	48
68	Chemotherapeutic implants via subcritical CO2 modification. Biomaterials, 2007, 28, 5562-5569.	5.7	14
69	Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds. Biomaterials, 2007, 28, 450-458.	5.7	121
70	Combined Effect of Glycosaminoglycan and Mechanical Stimulation on the In Vitro Biomechanics of Tissue Engineered Tendon Constructs. , 2007, , .		0
71	Nanotopographic Control of Cytoskeletal Organization. Langmuir, 2006, 22, 5087-5094.	1.6	28
72	EDC cross-linking improves skin substitute strength and stability. Biomaterials, 2006, 27, 5821-5827.	5.7	221

#	Article	IF	CITATIONS
73	Microstructural disassembly of calcium phosphates. Journal of Biomedical Materials Research Part B, 2004, 68A, 61-70.	3.0	9
74	Nanofibrillar Surfaces via Reactive Ion Etching. Langmuir, 2003, 19, 9071-9078.	1.6	45
75	Evaluation of femoral head damage during canine total hip replacement. Veterinary and Comparative Orthopaedics and Traumatology, 2003, 16, 184-190.	0.2	8
76	Nanoscale modifications of PET polymer surfaces via oxygen-plasma discharge yield minimal changes in attachment and growth of mammalian epithelial and mesenchymal cellsin vitro. Journal of Biomedical Materials Research Part B, 2002, 61, 234-245.	3.0	23