List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5671337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanohydroxyapatite (n-HAp) as a pickering stabilizer in oil-in-water (O/W) emulsions: a stability study. Journal of Dispersion Science and Technology, 2022, 43, 814-826.	1.3	6
2	In vitro digestion and bioaccessibility studies of vitamin E-loaded nanohydroxyapatite Pickering emulsions and derived fortified foods. LWT - Food Science and Technology, 2022, 154, 112706.	2.5	11
3	Water-in-Oil-in-Water Double Emulsions as Protective Carriers for Sambucus nigra L. Coloring Systems. Molecules, 2022, 27, 552.	1.7	4
4	Development of water-in-oil Pickering emulsions from sodium oleate surface-modified nano-hydroxyapatite. Surfaces and Interfaces, 2022, 29, 101759.	1.5	3
5	Pickering Emulsions Stabilized with Curcumin-Based Solid Dispersion Particles as Mayonnaise-like Food Sauce Alternatives. Molecules, 2022, 27, 1250.	1.7	8
6	Evaluation of plant extracts as an efficient source of additives for active food packaging. Food Frontiers, 2022, 3, 480-488.	3.7	19
7	Microwave-Assisted Lignin Wet Peroxide Oxidation to C ₄ Dicarboxylic Acids. Industrial & & & & & & & & & & & & & & & & & & &	1.8	1
8	Effect of temperature, pH and ionic strength on hydroxyapatite stabilised Pickering emulsions produced in batch and continuous mode. Food Biophysics, 2022, 17, 422-436.	1.4	5
9	Pickering emulsions stabilized with chitosan/gum Arabic particles: Effect of chitosan degree of deacetylation on the physicochemical properties and cannabidiol (CBD) topical delivery. Journal of Molecular Liquids, 2022, 355, 118993.	2.3	13
10	Spirulina (Arthrospira platensis) protein-rich extract as a natural emulsifier for oil-in-water emulsions: Optimization through a sequential experimental design strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129264.	2.3	7
11	Saponins as Natural Emulsifiers for Nanoemulsions. Journal of Agricultural and Food Chemistry, 2022, 70, 6573-6590.	2.4	26
12	Fig "Ficus carica L.―and its by-products: A decade evidence of their health-promoting benefits towards the development of novel food formulations. Trends in Food Science and Technology, 2022, 127, 1-13.	7.8	19
13	Hypericum genus cosmeceutical application – A decade comprehensive review on its multifunctional biological properties. Industrial Crops and Products, 2021, 159, 113053.	2.5	21
14	Green nanocomposites from Salvia-based waterborne polyurethane-urea dispersions reinforced with nanocellulose. Progress in Organic Coatings, 2021, 150, 105989.	1.9	11
15	Advances in Waterborne Polyurethane and Polyurethane-Urea Dispersions and Their Eco-friendly Derivatives: A Review. Polymers, 2021, 13, 409.	2.0	47
16	Development of Chitosan Microspheres through a Green Dual Crosslinking Strategy Based on Tripolyphosphate and Vanillin. Molecules, 2021, 26, 2325.	1.7	7
17	Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends in Food Science and Technology, 2021, 110, 418-431.	7.8	71
18	Continuous production of hydroxyapatite Pickering emulsions using a mesostructured reactor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126365.	2.3	14

#	Article	IF	CITATIONS
19	Lipid composition optimization in spray congealing technique and testing with curcumin-loaded microparticles. Advanced Powder Technology, 2021, 32, 1710-1722.	2.0	13
20	New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126327.	2.3	35
21	Anthocyanins from Rubus fruticosus L. and Morus nigra L. Applied as Food Colorants: A Natural Alternative. Plants, 2021, 10, 1181.	1.6	18
22	Valorization of Lignin Side-Streams into Polyols and Rigid Polyurethane Foams—A Contribution to the Pulp and Paper Industry Biorefinery. Energies, 2021, 14, 3825.	1.6	14
23	Fourier transform infrared spectroscopy-chemometric approach as a non-destructive olive cultivar tool for discriminating Portuguese monovarietal olive oils. European Food Research and Technology, 2021, 247, 2473-2484.	1.6	4
24	Evaluation of saponin-rich extracts as natural alternative emulsifiers: A comparative study with pure Quillaja Bark saponin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126748.	2.3	23
25	β-Carotene colouring systems based on solid lipid particles produced by hot melt dispersion. Food Control, 2021, 129, 108262.	2.8	2
26	Effect of Methoxy Substituents on Wet Peroxide Oxidation of Lignin and Lignin Model Compounds: Understanding the Pathway to C ₄ Dicarboxylic Acids. Industrial & Engineering Chemistry Research, 2021, 60, 3543-3553.	1.8	12
27	Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles as green topical delivery vehicles for cannabidiol (CBD). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127677.	2.3	27
28	Lignin conversion into C4 dicarboxylic acids by catalytic wet peroxide oxidation using titanium silicalite-1. Industrial Crops and Products, 2021, 173, 114155.	2.5	3
29	Synthesis of thermal insulating polyurethane foams from lignin and rapeseed based polyols: A comparative study. Industrial Crops and Products, 2020, 143, 111882.	2.5	80
30	Enhancing trans-resveratrol topical delivery and photostability through entrapment in chitosan/gum Arabic Pickering emulsions. International Journal of Biological Macromolecules, 2020, 147, 150-159.	3.6	51
31	Whey protein supplement as a source of microencapsulated PUFA-rich vegetable oils. Food Bioscience, 2020, 37, 100690.	2.0	6
32	Chitosan-based Pickering emulsions and their applications: A review. Carbohydrate Polymers, 2020, 250, 116885.	5.1	135
33	Microalgae-Derived Pigments: A 10-Year Bibliometric Review and Industry and Market Trend Analysis. Molecules, 2020, 25, 3406.	1.7	131
34	Development of Water-in-Oil Emulsions as Delivery Vehicles and Testing with a Natural Antimicrobial Extract. Molecules, 2020, 25, 2105.	1.7	29
35	Betacyanins from Gomphrena globosa L. flowers: Incorporation in cookies as natural colouring agents. Food Chemistry, 2020, 329, 127178.	4.2	18
36	Analysis of the oxypropylation process of a lignocellulosic material, almond shell, using the response surface methodology (RSM). Industrial Crops and Products, 2020, 153, 112542.	2.5	7

#	Article	IF	CITATIONS
37	Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential Applications. Molecules, 2020, 25, 2672.	1.7	48
38	Optimization of ergosterol extraction from Pleurotus mushrooms using response surface methodology. Food and Function, 2020, 11, 5887-5897.	2.1	10
39	Catalytic wet peroxide oxidation of vanillic acid as a lignin model compound towards the renewable production of dicarboxylic acids. Chemical Engineering Research and Design, 2020, 159, 115-124.	2.7	14
40	Ficus carica L. and Prunus spinosa L. extracts as new anthocyanin-based food colorants: A thorough study in confectionery products. Food Chemistry, 2020, 333, 127457.	4.2	39
41	Formulation and Optimization of Nanoemulsions Using the Natural Surfactant Saponin from Quillaja Bark. Molecules, 2020, 25, 1538.	1.7	37
42	The Role of Bioactive Compounds and other Metabolites from Mushrooms against Skin Disorders- A Systematic Review Assessing their Cosmeceutical and Nutricosmetic Outcomes. Current Medicinal Chemistry, 2020, 27, 6926-6965.	1.2	7
43	Kinetics of Oxidative Degradation of Lignin-Based Phenolic Compounds in Batch Reactor. Industrial & Engineering Chemistry Research, 2019, 58, 16442-16449.	1.8	17
44	Preparation of chitosan/gum Arabic nanoparticles and their use as novel stabilizers in oil/water Pickering emulsions. Carbohydrate Polymers, 2019, 224, 115190.	5.1	78
45	A comparative study between conventional and non-conventional extraction techniques for the recovery of ergosterol from Agaricus blazei Murrill. Food Research International, 2019, 125, 108541.	2.9	23
46	Chitosan-cellulose particles as delivery vehicles for limonene fragrance. Industrial Crops and Products, 2019, 139, 111407.	2.5	31
47	Tailoring swelling of alginate-gelatin hydrogel microspheres by crosslinking with calcium chloride combined with transglutaminase. Carbohydrate Polymers, 2019, 223, 115035.	5.1	43
48	TPCS/PBAT blown extruded films added with curcumin as a technological approach for active packaging materials. Food Packaging and Shelf Life, 2019, 22, 100424.	3.3	49
49	Promising Antioxidant and Antimicrobial Food Colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants, 2019, 8, 394.	2.2	33
50	<i>Agaricus blazei</i> Murrill from Brazil: an ingredient for nutraceutical and cosmeceutical applications. Food and Function, 2019, 10, 565-572.	2.1	11
51	A novel natural coating for food preservation: Effectiveness on microbial growth and physicochemical parameters. LWT - Food Science and Technology, 2019, 104, 76-83.	2.5	13
52	Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. Journal of Functional Foods, 2019, 60, 103427.	1.6	77
53	Heat and pH stable curcumin-based hydrophilic colorants obtained by the solid dispersion technology assisted by spray-drying. Chemical Engineering Science, 2019, 205, 248-258.	1.9	18
54	New insights into nanohydroxyapatite/chitosan nanocomposites for bone tissue regeneration. , 2019, , 331-371.		2

FILOMENA BARREIRO

#	Article	IF	CITATIONS
55	Mushroom ethanolic extracts as cosmeceuticals ingredients: Safety and ex vivo skin permeation studies. Food and Chemical Toxicology, 2019, 127, 228-236.	1.8	34
56	Phenolic acids, cinnamic acid, and ergosterol as cosmeceutical ingredients: Stabilization by microencapsulation to ensure sustained bioactivity. Microchemical Journal, 2019, 147, 469-477.	2.3	36
57	Ultrasound as a Rapid and Low-Cost Extraction Procedure to Obtain Anthocyanin-Based Colorants from Prunus spinosa L. Fruit Epicarp: Comparative Study with Conventional Heat-Based Extraction. Molecules, 2019, 24, 573.	1.7	30
58	<i>Araucaria angustifolia</i> (Bertol.) Kuntze extract as a source of phenolic compounds in TPS/PBAT active films. Food and Function, 2019, 10, 7697-7706.	2.1	26
59	Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils. Food Chemistry, 2019, 274, 220-227.	4.2	35
60	In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food and Chemical Toxicology, 2019, 125, 29-37.	1.8	51
61	Microencapsulation of ergosterol and Agaricus bisporus L. extracts by complex coacervation using whey protein and chitosan: Optimization study using response surface methodology. LWT - Food Science and Technology, 2019, 103, 228-237.	2.5	24
62	Optimization of heat- and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chemistry, 2019, 275, 309-321.	4.2	112
63	Bioactive evaluation and application of different formulations of the natural colorant curcumin (E100) in a hydrophilic matrix (yogurt). Food Chemistry, 2018, 261, 224-232.	4.2	39
64	Systematic study on the extraction of antioxidants from pinhão (araucaria angustifolia (bertol.)) Tj ETQq0 0 0	rgBT/Ove 4.2	rlock 10 Tf 50
65	Development of waterborne polyurethane-ureas added with plant extracts: Study of different incorporation routes and their influence on particle size, thermal, mechanical and antibacterial properties. Progress in Organic Coatings, 2018, 117, 76-90.	1.9	24
66	Chemical profile and bioactive properties of the essential oil isolated from Ammodaucus leucotrichus fruits growing in Sahara and its evaluation as a cosmeceutical ingredient. Industrial Crops and Products, 2018, 119, 249-254.	2.5	21
67	Recovery of bioactive compounds from Arbutus unedo L. fruits: Comparative optimization study of maceration/microwave/ultrasound extraction techniques. Food Research International, 2018, 109, 455-471.	2.9	40
68	Supercritical CO 2 assisted process for the production of highâ€purity and sterile nanoâ€hydroxyapatite/chitosan hybrid scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 965-975.	1.6	15
69	Waterborne polyurethane-urea dispersion with chain extension step in homogeneous medium reinforced with cellulose nanocrystals. Composites Part B: Engineering, 2018, 137, 31-38.	5.9	21
70	Extraction of triterpenoids and phenolic compounds from <i>Ganoderma lucidum</i> : optimization study using the response surface methodology. Food and Function, 2018, 9, 209-226.	2.1	59
71	Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid. Food Chemistry, 2018, 245, 845-853.	4.2	53
72	Antiangiogenic compounds: well-established drugs versus emerging natural molecules. Cancer Letters, 2018, 415, 86-105.	3.2	21

#	Article	IF	CITATIONS
73	Antioxidants extraction from Pinhão (Araucaria angustifolia (Bertol.) Kuntze) coats and application to zein films. Food Packaging and Shelf Life, 2018, 15, 28-34.	3.3	33
74	Polyurethanes from Recovered and Depolymerized Lignins. , 2018, , 85-117.		1
75	Integrated Process for Vanillin and Syringaldehyde Production from Kraft Lignin. , 2018, , 53-84.		1
76	An Integrated Approach for Added-Value Products from Lignocellulosic Biorefineries. , 2018, , .		13
77	Chemical Pulp Mills as Biorefineries. , 2018, , 1-51.		4
78	Preparation of nano-hydroxyapatite/chitosan aqueous dispersions: From lab scale to continuous production using an innovative static mixer. Carbohydrate Polymers, 2018, 202, 20-28.	5.1	16
79	Mushroom-based cosmeceutical ingredients: Microencapsulation and in vitro release profile. Industrial Crops and Products, 2018, 124, 44-52.	2.5	18
80	Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Research International, 2018, 113, 197-209.	2.9	83
81	Cosmetics Preservation: A Review on Present Strategies. Molecules, 2018, 23, 1571.	1.7	177
82	Optimization and comparison of heat and ultrasound assisted extraction techniques to obtain anthocyanin compounds from Arbutus unedo L. Fruits. Food Chemistry, 2018, 264, 81-91.	4.2	95
83	Nanodispersions of beta-carotene: effects on antioxidant enzymes and cytotoxic properties. Food and Function, 2018, 9, 3698-3706.	2.1	25
84	Oxypropylation of Brazilian Pine-Fruit Shell Evaluated by Principal Component Analysis. Journal of Renewable Materials, 2018, 6, 715-723.	1.1	3
85	Functionalized textiles with PUU/limonene microcapsules: effect of finishing methods on fragrance release. Journal of the Textile Institute, 2017, 108, 361-367.	1.0	15
86	Valorisation of tomato wastes for development of nutrient-rich antioxidant ingredients: A sustainable approach towards the needs of the today's society. Innovative Food Science and Emerging Technologies, 2017, 41, 160-171.	2.7	62
87	Modern extraction techniques optimized to extract betacyanins from Gomphrena globosa L Industrial Crops and Products, 2017, 105, 29-40.	2.5	35
88	Aroma-Loaded Microcapsules with Antibacterial Activity for Eco-Friendly Textile Application: Synthesis, Characterization, Release, and Green Grafting. Industrial & Engineering Chemistry Research, 2017, 56, 5516-5526.	1.8	80
89	Extraction of rosmarinic acid from Melissa officinalis L. by heat-, microwave- and ultrasound-assisted extraction techniques: A comparative study through response surface analysis. Separation and Purification Technology, 2017, 186, 297-308.	3.9	55
90	Modulating the microstructure of waterborne polyurethanes for preparation of environmentally friendly nanocomposites by incorporating cellulose nanocrystals. Cellulose, 2017, 24, 823-834.	2.4	12

#	Article	IF	CITATIONS
91	Development of dairy beverages functionalized with pure ergosterol and mycosterol extracts: an alternative to phytosterol-based beverages. Food and Function, 2017, 8, 103-110.	2.1	23
92	Evaluation of Arenaria montana L. hydroethanolic extract as a chemopreventive food ingredient: A case study focusing a dairy product (yogurt). Journal of Functional Foods, 2017, 38, 214-220.	1.6	5
93	UV-irradiated mushrooms as a source of vitamin D 2 : A review. Trends in Food Science and Technology, 2017, 70, 82-94.	7.8	69
94	Preparation and characterization of poly(urethane–urea) microcapsules containing limonene. Kinetic analysis. International Journal of Polymer Analysis and Characterization, 2017, 22, 709-724.	0.9	4
95	Lignin-based activated carbons as metal-free catalysts for the oxidative degradation of 4-nitrophenol in aqueous solution. Applied Catalysis B: Environmental, 2017, 219, 372-378.	10.8	52
96	The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food and Chemical Toxicology, 2017, 108, 139-147.	1.8	78
97	Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Industrial Crops and Products, 2017, 95, 404-415.	2.5	99
98	Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules, 2017, 22, 281.	1.7	246
99	Caracterização do perfil fenólico do extrato aquoso e hidroetanólico de Rosmarinus officinalis L Revista De Ciências Agrárias, 2017, 40, S147-S150.	0.2	1
100	Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Current Pharmaceutical Design, 2017, 23, 2787-2806.	0.9	91
101	Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules, 2016, 21, 1372.	1.7	68
102	Synthesis of waterborne polyurethane-urea dispersions with chain extension step in homogeneous and heterogeneous media. Journal of Colloid and Interface Science, 2016, 476, 184-192.	5.0	50
103	Biobased Additives as Biodegradability Enhancers with Application in TPU-Based Footwear Components. Journal of Renewable Materials, 2016, 4, 47-56.	1.1	18
104	Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology. Food and Bioproducts Processing, 2016, 98, 283-298.	1.8	33
105	Rosemary extracts in functional foods: extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese. Food and Function, 2016, 7, 2185-2196.	2.1	58
106	Tarragon phenolic extract as a functional ingredient for pizza dough: Comparative performance with ascorbic acid (E300). Journal of Functional Foods, 2016, 26, 268-278.	1.6	11
107	Optimization of microwave-assisted extraction of ergosterol from Agaricus bisporus L. by-products using response surface methodology. Food and Bioproducts Processing, 2016, 100, 25-35.	1.8	56
108	Microencapsulation of red and white thyme oil in poly(lacticâ€coâ€glycolic) acid: Assessment of encapsulation efficiency and antimicrobial capacity of the produced microcapsules. Canadian Journal of Chemical Engineering, 2016, 94, 469-475.	0.9	18

#	Article	IF	CITATIONS
109	Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Industrial Crops and Products, 2016, 90, 38-48.	2.5	134
110	Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chemistry, 2016, 197, 1054-1063.	4.2	132
111	Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: A nutraceutical-oriented optimization study. Separation and Purification Technology, 2016, 164, 114-124.	3.9	106
112	Ceratonia siliqua L. hydroethanolic extract obtained by ultrasonication: antioxidant activity, phenolic compounds profile and effects in yogurts functionalized with their free and microencapsulated forms. Food and Function, 2016, 7, 1319-1328.	2.1	23
113	Spray drying as a viable process to produce nano-hydroxyapatite/chitosan (n-HAp/CS) hybrid microparticles mimicking bone composition. Advanced Powder Technology, 2016, 27, 575-583.	2.0	43
114	Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends in Food Science and Technology, 2016, 50, 193-210.	7.8	89
115	Cottage cheeses functionalized with fennel and chamomile extracts: Comparative performance between free and microencapsulated forms. Food Chemistry, 2016, 199, 720-726.	4.2	36
116	A bioactive formulation based on Fragaria vesca L. vegetative parts: Chemical characterisation and application in κ-carrageenan gelatin. Journal of Functional Foods, 2015, 16, 243-255.	1.6	20
117	Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients. Food Chemistry, 2015, 188, 612-618.	4.2	55
118	Microencapsulation of bioactives for food applications. Food and Function, 2015, 6, 1035-1052.	2.1	209
119	The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Research International, 2015, 76, 821-827.	2.9	111
120	Water-based poly(urethane-urea) dispersions — meeting the European Union legislation. Polimery, 2015, 60, 536-540.	0.4	7
121	Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 377-399.	5.9	535
122	Lignin-based rigid polyurethane foams with improved biodegradation. Journal of Cellular Plastics, 2014, 50, 81-95.	1.2	73
123	Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal, 2014, 245, 191-200.	6.6	253
124	Phenolic extracts of Rubus ulmifolius Schott flowers: characterization, microencapsulation and incorporation into yogurts as nutraceutical sources. Food and Function, 2014, 5, 1091-1100.	2.1	69
125	Exploring the antioxidant potential of Helichrysum stoechas (L.) Moench phenolic compounds for cosmetic applications: Chemical characterization, microencapsulation and incorporation into a moisturizer. Industrial Crops and Products, 2014, 53, 330-336.	2.5	48
126	Development of chitosan-based antimicrobial leather coatings. Carbohydrate Polymers, 2013, 98, 1229-1235.	5.1	37

#	Article	IF	CITATIONS
127	Release Studies of Thymol and <i>p</i> -Cymene from Polylactide Microcapsules. Industrial & Engineering Chemistry Research, 2012, 51, 11565-11571.	1.8	25
128	Fungal degradation of lignin-based rigid polyurethane foams. Polymer Degradation and Stability, 2012, 97, 2069-2076.	2.7	46
129	Polylactide-Based Thyme Oil Microcapsules Production: Evaluation of Surfactants. Industrial & Engineering Chemistry Research, 2011, 50, 898-904.	1.8	39
130	Release of Thyme Oil from Polylactide Microcapsules. Industrial & Engineering Chemistry Research, 2011, 50, 13752-13761.	1.8	37
131	Kinetic study of the formation of lignin-based polyurethanes in bulk. Reactive and Functional Polymers, 2011, 71, 863-869.	2.0	73
132	Olive stone as a renewable source of biopolyols. Industrial Crops and Products, 2010, 32, 7-12.	2.5	84
133	An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chemical Engineering Research and Design, 2009, 87, 1276-1292.	2.7	370
134	Scentfashion®: Microencapsulated perfumes for textile application. Chemical Engineering Journal, 2009, 149, 463-472.	6.6	189
135	Optimization Study of Lignin Oxypropylation in View of the Preparation of Polyurethane Rigid Foams. Industrial & Engineering Chemistry Research, 2009, 48, 2583-2589.	1.8	237
136	Microencapsulation of thyme oil by coacervation. Journal of Microencapsulation, 2009, 26, 667-675.	1.2	59
137	Lignins as macromonomers for polyurethane synthesis: A comparative study on hydroxyl group determination. Journal of Applied Polymer Science, 2008, 109, 3008-3017.	1.3	121
138	Monitoring of lignin-based polyurethane synthesis by FTIR-ATR. Industrial Crops and Products, 2008, 27, 168-174.	2.5	101
139	Microencapsulation of Limonene for Textile Application. Industrial & Engineering Chemistry Research, 2008, 47, 4142-4147.	1.8	104
140	RIGID POLYURETHANE FOAMS FROM LIGNIN BASED-POLYOLS. AIP Conference Proceedings, 2008, , .	0.3	7
141	Experimental Determination of Sequence Length Distribution of Hard Segments in Polyester-Polyurethanes. Macromolecules, 1994, 27, 7650-7653.	2.2	10
142	Characterization and evaluation of commercial fragrance microcapsules for textile application. Journal of the Textile Institute, 0, , 1-13.	1.0	12
143	New Trends in Natural Emulsifiers and Emulsion Technology for the Food Industry. , 0, , .		4