Jianshu Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5671069/publications.pdf Version: 2024-02-01

ПлисниТл

#	Article	IF	CITATIONS
1	Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environmental Pollution, 2019, 244, 72-83.	3.7	212
2	Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. Journal of Hazardous Materials, 2013, 261, 387-397.	6.5	143
3	Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. Journal of Soils and Sediments, 2015, 15, 163-178.	1.5	137
4	An integrated approach to identify quantitative sources and hazardous areas of heavy metals in soils. Science of the Total Environment, 2019, 646, 19-28.	3.9	75
5	Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation. Chemosphere, 2020, 242, 125266.	4.2	52
6	PMF receptor models and sequential Gaussian simulation to determine the quantitative sources and hazardous areas of potentially toxic elements in soils. Geoderma, 2019, 353, 347-358.	2.3	46
7	Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China. Science of the Total Environment, 2013, 450-451, 108-119.	3.9	42
8	Multivariate geostatistical analyses of heavy metals in soils: Spatial multi-scale variations in Wulian, Eastern China. Ecotoxicology and Environmental Safety, 2014, 107, 140-147.	2.9	41
9	Distinguishing anthropogenic and natural sources of trace elements in soils undergoing recent 10-year rapid urbanization: a case of Donggang, Eastern China. Environmental Science and Pollution Research, 2015, 22, 10539-10550.	2.7	41
10	Spatial multi-scale relationships of ecosystem services: A case study using a geostatistical methodology. Scientific Reports, 2017, 7, 9486.	1.6	41
11	Multi-scale analysis of heavy metals sources in soils of Jiangsu Coast, Eastern China. Chemosphere, 2018, 212, 964-973.	4.2	37
12	Identifying sources and hazardous risks of heavy metals in topsoils of rapidly urbanizing East China. Journal of Chinese Geography, 2016, 26, 735-749.	1.5	36
13	Spatial assessment models to evaluate human health risk associated to soil potentially toxic elements. Environmental Pollution, 2021, 268, 115699.	3.7	35
14	The application of geostatistical analysis and receptor model for the spatial distribution and sources of potentially toxic elements in soils. Environmental Geochemistry and Health, 2021, 43, 407-421.	1.8	23
15	Assessing spatial distribution, sources, and potential ecological risk of heavy metals in surface sediments of the Nansi Lake, Eastern China. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 1671-1681.	0.7	22
16	Integrated receptor models and multivariate geostatistical simulation for source apportionment of potentially toxic elements in soils. Catena, 2020, 194, 104638.	2.2	21
17	Source apportionment and spatial distribution of potentially toxic elements in soils: A new exploration on receptor and geostatistical models. Science of the Total Environment, 2021, 759, 143428.	3.9	18
18	Spectroscopic diagnosis of zinc contaminated soils based on competitive adaptive reweighted sampling algorithm and an improved support vector machine. Spectroscopy Letters, 2020, 53, 86-99.	0.5	15

Jianshu Lv

#	Article	IF	CITATIONS
19	Future Impacts of Climate Change and Land Use on Multiple Ecosystem Services in a Rapidly Urbanizing Agricultural Basin, China. Sustainability, 2018, 10, 4575.	1.6	14
20	Identifying the sources, spatial distributions, and pollution status of heavy metals in soils from the southern coast of Laizhou Bay, eastern China. Human and Ecological Risk Assessment (HERA), 2019, 25, 1953-1967.	1.7	14
21	Source apportionment of potentially toxic elements in soils of the Yellow River Delta Nature Reserve, China: The application of three receptor models and geostatistical independent simulation. Environmental Pollution, 2021, 289, 117834.	3.7	11
22	Source identification and spatial distribution of metals in soils in a typical area of the lower Yellow River, eastern China. Environmental Science and Pollution Research, 2018, 25, 21106-21117.	2.7	10
23	Pollution status and ecological risk of heavy metals in the soils of five land-use types in a typical sewage irrigation area, eastern China. Environmental Monitoring and Assessment, 2020, 192, 471.	1.3	10
24	Combining finite mixture distribution, receptor model, and geostatistical simulation to evaluate heavy metals pollution in soils: Source and spatial pattern. Land Degradation and Development, 2021, 32, 2105-2115.	1.8	9
25	Evaluating source-oriented human health risk of potentially toxic elements: A new exploration of multiple age groups division. Science of the Total Environment, 2021, 787, 147502.	3.9	8
26	Source apportionment and health risk quantification for heavy metal sources in soils near aluminum-plastic manufacturing facilities in northeast China. Human and Ecological Risk Assessment (HERA), 2020, 26, 2225-2244.	1.7	4