Zhibin Gao

List of Publications by Citations

Source: https://exaly.com/author-pdf/5670893/zhibin-gao-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

48 819 15 28 g-index

48 1,161 5.8 5.17 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
48	Novel Two-Dimensional Silicon Dioxide with in-Plane Negative Poisson'd Ratio. <i>Nano Letters</i> , 2017 , 17, 772-777	11.5	131
47	Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering. <i>Nano Letters</i> , 2017 , 17, 2621-2626	11.5	97
46	Unusually low thermal conductivity of atomically thin 2D tellurium. <i>Nanoscale</i> , 2018 , 10, 12997-13003	7.7	83
45	High Thermoelectric Performance in Two-Dimensional Tellurium: An Ab Initio Study. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 40702-40709	9.5	63
44	Enhancement of Out-of-Plane Charge Transport in a Vertically Stacked Two-Dimensional Heterostructure Using Point Defects. <i>ACS Nano</i> , 2018 , 12, 10529-10536	16.7	39
43	Tunable Properties of Novel GaO Monolayer for Electronic and Optoelectronic Applications. <i>ACS Applied Materials & Descriptions (Materials & Description of Materials & Description of </i>	9.5	37
42	Thermoelectric Penta-Silicene with a High Room-Temperature Figure of Merit. <i>ACS Applied Materials & Description of Materials & D</i>	9.5	36
41	Enhanced Raman Scattering of CuPc Films on Imperfect WSe2 Monolayer Correlated to Exciton and Charge-Transfer Resonances. <i>Advanced Functional Materials</i> , 2018 , 28, 1805710	15.6	36
40	Degenerately Doped Transition Metal Dichalcogenides as Ohmic Homojunction Contacts to Transition Metal Dichalcogenide Semiconductors. <i>ACS Nano</i> , 2019 , 13, 5103-5111	16.7	25
39	Strain-tunable III-nitride/ZnO heterostructures for photocatalytic water-splitting: A hybrid functional calculation. <i>APL Materials</i> , 2020 , 8, 041114	5.7	23
38	Ultra-low lattice thermal conductivity of monolayer penta-silicene and penta-germanene. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 26033-26040	3.6	22
37	Ultralow lattice thermal conductivity and electronic properties of monolayer 1T phase semimetal SiTe2 and SnTe2. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2019 , 108, 53-59	3	21
36	Anisotropic thermal expansion and thermodynamic properties of monolayer ITe. <i>Physical Review B</i> , 2019 , 99,	3.3	17
35	Potential molecular semiconductor devices: cyclo-C (n = 10 and 14) with higher stabilities and aromaticities than acknowledged cyclo-C. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 4823-4831	3.6	16
34	Strain effects on the mechanical properties of Group-V monolayers with buckled honeycomb structures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2019 , 112, 59-65	3	15
33	Two-Dimensional Mechanical Metamaterials with Unusual Poisson Ratio Behavior. <i>Physical Review Applied</i> , 2018 , 10,	4.3	14
32	Band degeneracy enhanced thermoelectric performance in layered oxyselenides by first-principles calculations. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	14

(2018-2020)

31	Abnormally low thermal conductivity of 2D selenene: An ab initio study. <i>Journal of Applied Physics</i> , 2020 , 127, 065103	2.5	11
30	Comparative investigation of the thermal transport properties of Janus SnSSe and SnS monolayers. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 16796-16803	3.6	10
29	Impact of the interface vacancy on Schottky barrier height for Au/AlN polar interfaces. <i>Applied Surface Science</i> , 2020 , 505, 144650	6.7	10
28	Extrapolated Defect Transition Level in Two-Dimensional Materials: The Case of Charged Native Point Defects in Monolayer Hexagonal Boron Nitride. <i>ACS Applied Materials & Discrete Section</i> , 12, 17055-17061	9.5	8
27	Heat conduction and energy diffusion in momentum-conserving one-dimensional full-lattice ding-a-ling model. <i>Physical Review E</i> , 2016 , 93, 022102	2.4	8
26	Insight into Two-Dimensional Borophene: Five-Center Bond and Phonon-Mediated Superconductivity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 47279-47288	9.5	8
25	Stretch diffusion and heat conduction in one-dimensional nonlinear lattices. <i>Physical Review E</i> , 2016 , 93, 032130	2.4	7
24	Charge density wave instability and pressure-induced superconductivity in bulk 1TNbS2. <i>Physical Review B</i> , 2020 , 102,	3.3	7
23	A Novel Hyperbolic Two-Dimensional Carbon Material with an In-Plane Negative Poisson以 Ratio Behavior and Low-Gap Semiconductor Characteristics. <i>ACS Omega</i> , 2020 , 5, 15783-15790	3.9	6
22	Highly Anisotropic Thermoelectric Properties of Two-Dimensional As2Te3. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 1610-1620	4	6
21	Prediction on elastic properties of Nb-doped Ni systems. <i>Molecular Simulation</i> , 2019 , 45, 935-941	2	5
20	Effect of processing parameters on thermal behavior and related density in GH3536 alloy manufactured by selective laser melting. <i>Journal of Materials Research</i> , 2019 , 34, 1405-1414	2.5	5
19	Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe. <i>Chinese Physics Letters</i> , 2021 , 38, 027301	1.8	5
18	Thermal transport properties of novel two-dimensional CSe. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 17833-17841	3.6	4
17	Highly anisotropic electronic and mechanical properties of monolayer and bilayer As2S3. <i>Applied Surface Science</i> , 2021 , 542, 148665	6.7	4
16	Three metallic BN polymorphs: 1D multi-threaded conduction in a 3D network. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 489-496	3.6	3
15	Native Point Defects in Monolayer Hexagonal Boron Phosphide from First Principles. <i>Journal of Electronic Materials</i> , 2020 , 49, 5782-5789	1.9	3
14	Thin Films: Enhanced Raman Scattering of CuPc Films on Imperfect WSe2 Monolayer Correlated to Exciton and Charge-Transfer Resonances (Adv. Funct. Mater. 52/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870369	15.6	3

Insights into thermal transport property of monolayer C4N3H: A first-principles study. Physica E:

Study on Fracture Parameters of Stress Corrosion Cracking Tip of AA6082 Alloy at the Microscopic

Structures and Properties of Elitanium Alloys Doped with Trace Transition Metals: A Density

Functional Theory Study. Russian Journal of Physical Chemistry A, 2020, 94, 2055-2063

Low-Dimensional Systems and Nanostructures, 2020, 124, 114241

Scale. Journal of Physics: Conference Series, 2021, 2002, 012001

3

0.7

0.3

O

3

1