
Yongping Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5670871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of effectiveness of vegetative buffers on sediment trapping in agricultural areas. Ecohydrology, 2009, 2, 321-336.	1.1	112
2	A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Science of the Total Environment, 2019, 669, 512-526.	3.9	105
3	Initial abstraction and curve numbers for semiarid watersheds in Southeastern Arizona. Hydrological Processes, 2014, 28, 774-783.	1.1	73
4	Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure from motion photogrammetric techniques. Land Degradation and Development, 2018, 29, 1896-1905.	1.8	40
5	EVALUATION OF Ann AGNPS NITROGEN LOADING IN AN AGRICULTURAL WATERSHED. Journal of the American Water Resources Association, 2003, 39, 457-466.	1.0	39
6	Assessing SWAT's performance in the Kaskaskia River watershed as influenced by the number of calibration stations used. Hydrological Processes, 2014, 28, 676-687.	1.1	31
7	Spatial Characterization of Riparian Buffer Effects on Sediment Loads from Watershed Systems. Journal of Environmental Quality, 2014, 43, 1736-1753.	1.0	29
8	IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+. Water (Switzerland), 2019, 11, 1681.	1.2	29
9	Sediment loss and its cause in Puerto Rico watersheds. Soil, 2015, 1, 595-602.	2.2	29
10	A Review of Applicability and Effectiveness of Low Impact Development/Green Infrastructure Practices in Arid/Semi-Arid United States. Environments - MDPI, 2015, 2, 221-249.	1.5	27
11	Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico. Biogeosciences, 2018, 15, 7059-7076.	1.3	25
12	Grassland-to-cropland conversion increased soil, nutrient, and carbon losses in the US Midwest between 2008 and 2016. Environmental Research Letters, 2021, 16, 054018.	2.2	25
13	Phosphorus losses from agricultural watersheds in the Mississippi Delta. Journal of Environmental Management, 2013, 115, 14-20.	3.8	24
14	Evaluation of SWAT Impoundment Modeling Methods in Water and Sediment Simulations. Journal of the American Water Resources Association, 2019, 55, 209-227.	1.0	23
15	A pollutant load hierarchical allocation method integrated in an environmental capacity management system for Zhushan Bay, Taihu Lake. Science of the Total Environment, 2015, 533, 223-237.	3.9	22
16	Stream channel erosion in a rapidly urbanizing region of the US–Mexico border: documenting the importance of channel hardpoints with Structureâ€fromâ€Motion photogrammetry. Earth Surface Processes and Landforms, 2018, 43, 1465-1477.	1.2	21
17	SWAT Model Application to Assess the Impact of Intensive Corn-farming on Runoff, Sediments and Phosphorous loss from an Agricultural Watershed in Wisconsin. Journal of Water Resource and Protection, 2012, 04, 423-431.	0.3	20
18	The NHDPlus dataset, watershed subdivision and SWAT model performance. Hydrological Sciences Journal, 2015, 60, 1690-1708.	1.2	19

YONGPING YUAN

#	Article	IF	CITATIONS
19	Impact factors and mechanisms of dissolved reactive phosphorus (DRP) losses from agricultural fields: A review and synthesis study in the Lake Erie basin. Science of the Total Environment, 2020, 714, 136624.	3.9	18
20	Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China. International Journal of Environmental Research and Public Health, 2012, 9, 1887-1907.	1.2	16
21	SWAT model application for evaluating agricultural conservation practice effectiveness in reducing phosphorous loss from the Western Lake Erie Basin. Journal of Environmental Management, 2022, 302, 114000.	3.8	15
22	Curve Numbers for Olive Orchard Catchments: Case Study in Southern Spain. Journal of Irrigation and Drainage Engineering - ASCE, 2015, 141, .	0.6	13
23	Modelling Ephemeral Gully Erosion from Unpaved Urban Roads: Equifinality and Implications for Scenario Analysis. Geosciences (Switzerland), 2018, 8, 137.	1.0	13
24	Environmental fate and impact assessment of thiobencarb application in California rice fields using RICEWQ. Science of the Total Environment, 2019, 664, 669-682.	3.9	13
25	AnnAGNPS Model Application for Nitrogen Loading Assessment for the Future Midwest Landscape Study. Water (Switzerland), 2011, 3, 196-216.	1.2	12
26	Sediment and total phosphorous contributors in Rock River watershed. Journal of Environmental Management, 2014, 133, 214-221.	3.8	12
27	Modelling Runoff and Sediment Loads in a Developing Coastal Watershed of the US-Mexico Border. Water (Switzerland), 2019, 11, 1024.	1.2	12
28	Sensitivity analysis of SWAT nitrogen simulations with and without in-stream processes. Archives of Agronomy and Soil Science, 2015, 61, 969-987.	1.3	11
29	Assessing the Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS. International Journal of Environmental Research and Public Health, 2011, 8, 2181-2199.	1.2	10
30	Evaluation of Soil Erosion and Sediment Yield From Ridge Watersheds Leading to Guánica Bay, Puerto Rico, Using the Soil and Water Assessment Tool Model. Soil Science, 2016, 181, 315-325.	0.9	9
31	A sensitivity analysis of pesticide concentrations in California Central Valley vernal pools. Environmental Pollution, 2020, 257, 113486.	3.7	9
32	Assessing the Impacts of Recent Crop Expansion on Water Quality in the Missouri River Basin Using the Soil and Water Assessment Tool. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002284.	1.3	8
33	Tillage Effects on Soil Properties and Spatial Variability in Two Mississippi Delta Watersheds. Soil Science, 2009, 174, 385-394.	0.9	6
34	Association between Natural Resources for Outdoor Activities and Physical Inactivity: Results from the Contiguous United States. International Journal of Environmental Research and Public Health, 2016, 13, 830.	1.2	6
35	Effectiveness of Nutrient Management on Water Quality Improvement: A Synthesis on Nitrate-Nitrogen Loss from Subsurface Drainage. Transactions of the ASABE, 2021, 64, 675-689.	1.1	6
36	Rapid assessment of abrupt urban mega-gully and landslide events with structure-from-motion photogrammetric techniques validates link to water resources infrastructure failures in an urban periphery. Natural Hazards and Earth System Sciences, 2022, 22, 523-538.	1.5	3

#	Article	IF	CITATIONS
37	Nitrogen Component in Nonpoint-Source Pollution Models. Agronomy, 0, , 27-64.	0.2	2
38	Letter to the Editor: Comments on "Springs drive downstream nitrate export from artificially-drained agricultural headwater catchments―by Goeller et al., 2019. Science of the Total Environment, 2021, 783, 146722.	3.9	1