
Jonathan C Doelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5670510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Land-based climate change mitigation measures can affect agricultural markets and food security. Nature Food, 2022, 3, 110-121.	6.2	61
2	Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environmental Research Letters, 2022, 17, 045004.	2.2	11
3	Global biomass supply modeling for long-run management of the climate system. Climatic Change, 2022, 172, .	1.7	8
4	Regional variation in the effectiveness of methane-based and land-based climate mitigation options. Earth System Dynamics, 2021, 12, 513-544.	2.7	6
5	Identifying regional drivers of future land-based biodiversity footprints. Global Environmental Change, 2021, 69, 102304.	3.6	10
6	Trade-offs between water needs for food, utilities, and the environment—a nexus quantification at different scales. Environmental Research Letters, 2021, 16, 115003.	2.2	5
7	Landâ€based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology, 2021, 27, 6025-6058.	4.2	114
8	Commentary: Food choices and environmental impacts: Achievements and challenges. Global Environmental Change, 2021, 71, 102402.	3.6	4
9	Projecting terrestrial biodiversity intactness with GLOBIO 4. Global Change Biology, 2020, 26, 760-771.	4.2	94
10	Afforestation for climate change mitigation: Potentials, risks and tradeâ€offs. Global Change Biology, 2020, 26, 1576-1591.	4.2	162
11	Are scenario projections overly optimistic about future yield progress?. Global Environmental Change, 2020, 64, 102120.	3.6	11
12	The climate change mitigation potential of bioenergy with carbon capture and storage. Nature Climate Change, 2020, 10, 1023-1029.	8.1	149
13	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	13.7	413
14	Reply to: An appeal to cost undermines food security risks of delayed mitigation. Nature Climate Change, 2020, 10, 420-421.	8.1	2
15	Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190189.	1.8	21
16	How food secure are the green, rocky and middle roads: food security effects in different world development paths. Environmental Research Communications, 2020, 2, 031002.	0.9	17
17	Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale. Earth System Science Data, 2020, 12, 789-804.	3.7	26
18	Global rules for translating land-use change (LUH2) to land-cover change for CMIP6 using GLM2. Geoscientific Model Development, 2020, 13, 3203-3220.	1.3	31

JONATHAN C DOELMAN

#	Article	IF	CITATIONS
19	Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13, 5425-5464.	1.3	408
20	The vulnerabilities of agricultural land and food production to future water scarcity. Global Environmental Change, 2019, 58, 101944.	3.6	120
21	Reconciling global sustainability targets and local action for food production and climate change mitigation. Global Environmental Change, 2019, 59, 101983.	3.6	36
22	Key determinants of global land-use projections. Nature Communications, 2019, 10, 2166.	5.8	123
23	A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2, 386-396.	11.5	152
24	Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 2019, 12, 1443-1475.	1.3	496
25	Making the Paris agreement climate targets consistent with food security objectives. Global Food Security, 2019, 23, 93-103.	4.0	46
26	Future global pig production systems according to the Shared Socioeconomic Pathways. Science of the Total Environment, 2019, 665, 739-751.	3.9	55
27	Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model. Earth System Dynamics, 2019, 10, 617-630.	2.7	22
28	Integrated scenarios to support analysis of the food–energy–water nexus. Nature Sustainability, 2019, 2, 1132-1141.	11.5	79
29	Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nature Climate Change, 2019, 9, 66-72.	8.1	139
30	Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Global Environmental Change, 2019, 54, 88-101.	3.6	151
31	Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 2018, 8, 325-332.	8.1	795
32	Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change, 2018, 8, 391-397.	8.1	455
33	Large uncertainty in carbon uptake potential of landâ€based climateâ€change mitigation efforts. Global Change Biology, 2018, 24, 3025-3038.	4.2	56
34	Biogeophysical Impacts of Landâ€Use Change on Climate Extremes in Lowâ€Emission Scenarios: Results From HAPPIâ€Land. Earth's Future, 2018, 6, 396-409.	2.4	31
35	Exploring SSP land-use dynamics using the IMACE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 2018, 48, 119-135.	3.6	202
36	Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biology, 2018, 24, 5895-5908.	4.2	126

JONATHAN C DOELMAN

#	Article	IF	CITATIONS
37	Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 2018, 13, 064021.	2.2	93
38	A Global Analysis of Future Water Deficit Based On Different Allocation Mechanisms. Water Resources Research, 2018, 54, 5803-5824.	1.7	42
39	Risk of increased food insecurity under stringent global climate change mitigation policy. Nature Climate Change, 2018, 8, 699-703.	8.1	319
40	Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 2018, 9, 2938.	5.8	194
41	Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160450.	1.6	46
42	Impact of LULCC on the emission of BVOCs during the 21st century. Atmospheric Environment, 2017, 165, 73-87.	1.9	11
43	Greenhouse gas emission curves for advanced biofuel supply chains. Nature Climate Change, 2017, 7, 920-924.	8.1	57
44	Assessing uncertainties in land cover projections. Global Change Biology, 2017, 23, 767-781.	4.2	103
45	Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 2017, 42, 237-250.	3.6	523
46	The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42, 153-168.	3.6	2,966
47	Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators. Biogeosciences, 2017, 14, 4829-4850.	1.3	33
48	Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth System Science Data, 2017, 9, 927-953.	3.7	587
49	Hotspots of uncertainty in landâ€use and landâ€cover change projections: a globalâ€scale model comparison. Global Change Biology, 2016, 22, 3967-3983.	4.2	171
50	Demand for biodiversity protection and carbon storage as drivers of global land change scenarios. Global Environmental Change, 2016, 40, 101-111.	3.6	71
51	Detecting leaf-water content in Mediterranean trees using high-resolution spectrometry. International Journal of Applied Earth Observation and Geoinformation, 2014, 27, 128-136.	1.4	26
52	Uncertain effectiveness of <i>Miscanthus</i> bioenergy expansion for climate change mitigation explored using land surface, agronomic and integrated assessment models. GCB Bioenergy, 0, , .	2.5	1