
John J Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5670112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research, 2006, 111, .	3.3	1,623
2	Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research, 2012, 117, .	3.3	1,287
3	Improved Analyses of Changes and Uncertainties in Sea Surface Temperature Measured In Situ since the Mid-Nineteenth Century: The HadSST2 Dataset. Journal of Climate, 2006, 19, 446-469.	1.2	721
4	A Tripole Index for the Interdecadal Pacific Oscillation. Climate Dynamics, 2015, 45, 3077-3090.	1.7	485
5	Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2876-2908.	1.0	441
6	Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. Journal of Geophysical Research, 2011, 116, .	3.3	309
7	An Updated Assessment of Near‣urface Temperature Change From 1850: The HadCRUT5 Data Set. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032361.	1.2	299
8	Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. Journal of Geophysical Research, 2011, 116, .	3.3	283
9	A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 2008, 453, 646-649.	13.7	265
10	El Niño and a record CO2 rise. Nature Climate Change, 2016, 6, 806-810.	8.1	208
11	A review of uncertainty in in situ measurements and data sets of sea surface temperature. Reviews of Geophysics, 2014, 52, 1-32.	9.0	165
12	An Ensemble Data Set of Sea Surface Temperature Change From 1850: The Met Office Hadley Centre HadSST.4.0.0.0 Data Set. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7719-7763.	1.2	143
13	An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature, 2010, 467, 444-447.	13.7	110
14	Copernicus Marine Service Ocean State Report. Journal of Operational Oceanography, 2018, 11, S1-S142.	0.6	96
15	A global climatology of the diurnal variations in sea-surface temperature and implications for MSU temperature trends. Geophysical Research Letters, 2007, 34, .	1.5	70
16	A Call for New Approaches to Quantifying Biases in Observations of Sea Surface Temperature. Bulletin of the American Meteorological Society, 2017, 98, 1601-1616.	1.7	69
17	Global analysis of night marine air temperature and its uncertainty since 1880: The HadNMAT2 data set. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1281-1298.	1.2	62
18	Guiding the Creation of A Comprehensive Surface Temperature Resource for Twenty-First-Century Climate Science. Bulletin of the American Meteorological Society, 2011, 92, ES40-ES47.	1.7	59

John J Kennedy

#	Article	IF	CITATIONS
19	Effects of instrumentation changes on sea surface temperature measured <i>in situ</i> . Wiley Interdisciplinary Reviews: Climate Change, 2010, 1, 718-728.	3.6	35
20	An integrated database of ocean temperature and salinity observations. Journal of Geophysical Research: Oceans, 2014, 119, 7139-7163.	1.0	31
21	On the Reprocessing and Reanalysis of Observations for Climate. , 2013, , 51-71.		27
22	Consistent nearâ€surface ocean warming since 1900 in two largely independent observing networks. Geophysical Research Letters, 2012, 39, .	1.5	25
23	Estimating Sea Surface Temperature Measurement Methods Using Characteristic Differences in the Diurnal Cycle. Geophysical Research Letters, 2018, 45, 363-371.	1.5	25
24	Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science, 2019, 6, .	1.2	25
25	High sensitivity of tropical precipitation to local sea surface temperature. Nature, 2021, 589, 408-414.	13.7	24
26	A successful prediction of the record CO ₂ rise associated with the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170301.	1.8	22
27	The EUSTACE Project: Delivering Global, Daily Information on Surface Air Temperature. Bulletin of the American Meteorological Society, 2020, 101, E1924-E1947.	1.7	18
28	The 2005/06 winter in Europe and the United Kingdom: Part 2 – Prediction techniques and their assessment against observations. Weather, 2006, 61, 337-346.	0.6	17
29	The Importance of Unresolved Biases in Twentieth-Century Sea Surface Temperature Observations. Bulletin of the American Meteorological Society, 2019, 100, 621-629.	1.7	15
30	Development of the HadISDH.marine humidity climate monitoring dataset. Earth System Science Data, 2020, 12, 2853-2880.	3.7	15
31	Progress towards a holistic land and marine surface meteorological database and a call for additional contributions. Geoscience Data Journal, 2021, 8, 103-120.	1.8	12
32	Global and regional climate in 2015. Weather, 2016, 71, 185-192.	0.6	9
33	Global and regional climate in 2016. Weather, 2017, 72, 219-225.	0.6	9
34	Global and regional climate in 2005. Weather, 2006, 61, 215-224.	0.6	7
35	CLASSnmat: A global night marine air temperature data set, 1880–2019. Geoscience Data Journal, 2020, 7, 170-184.	1.8	7
36	An ensemble reconstruction of global monthly sea surface temperature and sea ice concentration 1000–1849. Scientific Data, 2021, 8, 261.	2.4	7

John J Kennedy

#	Article	IF	CITATIONS
37	Global and regional climate in 2006. Weather, 2007, 62, 232-242.	0.6	5
38	Global and regional climate in 2007. Weather, 2008, 63, 296-304.	0.6	5
39	Global and regional climate in 2009. Weather, 2010, 65, 244-250.	0.6	5
40	Global and regional climate in 2011. Weather, 2012, 67, 212-218.	0.6	4
41	Global and regional climate in 2008. Weather, 2009, 64, 288-297.	0.6	3
42	Global and regional climate in 2010. Weather, 2011, 66, 188-194.	0.6	3
43	Global and regional climate in 2013. Weather, 2014, 69, 333-338.	0.6	3
44	Global and regional climate in 2018. Weather, 2019, 74, 332-340.	0.6	3
45	Global and regional climate in 2012. Weather, 2013, 68, 240-246.	0.6	1
46	Global and regional climate in 2017. Weather, 2018, 73, 382-390.	0.6	1
47	Global and regional climate in 2019. Weather, 2020, 75, 264-271.	0.6	1
48	Global and regional climate in 2014. Weather, 2015, 70, 225-232.	0.6	0
49	Global and regional climate inÂ2020. Weather, 2021, 76, 360-369.	0.6	Ο