
Zoltan Dekan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5669962/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature, 2016, 534, 494-499.	27.8	239
2	Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nature Communications, 2014, 5, 3165.	12.8	122
3	Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Scientific Reports, 2017, 7, 40883.	3.3	120
4	Modulating Oxytocin Activity and Plasma Stability by Disulfide Bond Engineering. Journal of Medicinal Chemistry, 2010, 53, 8585-8596.	6.4	112
5	Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain. Toxins, 2016, 8, 78.	3.4	94
6	α-Conotoxin ImI Incorporating Stable Cystathionine Bridges Maintains Full Potency and Identical Three-Dimensional Structure. Journal of the American Chemical Society, 2011, 133, 15866-15869.	13.7	81
7	ldentification and Characterization of ProTx-III [<i>μ</i> -TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula <i>Thrixopelma pruriens</i> . Molecular Pharmacology, 2015, 88, 291-303.	2.3	72
8	A Tarantula-Venom Peptide Antagonizes the TRPA1 Nociceptor Ion Channel by Binding to the S1–S4 Gating Domain. Current Biology, 2014, 24, 473-483.	3.9	56
9	Isolation, characterization and total regioselective synthesis of the novel μ4O-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochemical Pharmacology, 2012, 84, 540-548.	4.4	54
10	Total Synthesis of Human Hepcidin through Regioselective Disulfideâ€Bond Formation by using the Safety atch Cysteine Protecting Group 4,4′â€Dimethylsulfinylbenzhydryl. Angewandte Chemie - International Edition, 2014, 53, 2931-2934.	13.8	46
11	Modulatory features of the novel spider toxin μâ€TRTXâ€Df1a isolated from the venom of the spider <i>Davus fasciatus</i> . British Journal of Pharmacology, 2017, 174, 2528-2544.	5.4	46
12	Development of a μO-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8. Journal of Biological Chemistry, 2016, 291, 11829-11842.	3.4	37
13	Antiallodynic effects of the selective NaV1.7 inhibitor Pn3a in a mouse model of acute postsurgical pain: evidence for analgesic synergy with opioids and baclofen. Pain, 2019, 160, 1766-1780.	4.2	35
14	PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cellular and Molecular Life Sciences, 2018, 75, 4511-4524.	5.4	34
15	A tetrapeptide class of biased analgesics from an Australian fungus targets the µ-opioid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22353-22358.	7.1	31
16	Δâ€Myrtoxinâ€Mp1a is a Helical Heterodimer from the Venom of the Jack Jumper Ant that has Antimicrobial, Membraneâ€Disrupting, and Nociceptive Activities. Angewandte Chemie - International Edition, 2017, 56, 8495-8499.	13.8	28
17	Conotoxin Φâ€MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Antiâ€Apoptotic Activity. Angewandte Chemie - International Edition, 2017, 56, 14973-14976.	13.8	25
18	Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, <i>Doratifera vulnerans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17

ZOLTAN DEKAN

#	Article	IF	CITATIONS
19	Mapping the Molecular Surface of the Analgesic NaV1.7-Selective Peptide Pn3a Reveals Residues Essential for Membrane and Channel Interactions. ACS Pharmacology and Translational Science, 2020, 3, 535-546.	4.9	16
20	Olfactory bulbâ€ŧargeted quantum dot (QD) bioconjugate and Kv1.3 blocking peptide improve metabolic health in obese male mice. Journal of Neurochemistry, 2021, 157, 1876-1896.	3.9	15
21	Conotoxin engineering: dual pharmacophoric noradrenaline transport inhibitor/integrin binding peptide with improved stability. Organic and Biomolecular Chemistry, 2012, 10, 5791.	2.8	13
22	Novel venom-derived inhibitors of the human EAG channel, a putative antiepileptic drug target. Biochemical Pharmacology, 2018, 158, 60-72.	4.4	13
23	Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels. Scientific Reports, 2015, 5, 14763.	3.3	12
24	Fulditoxin, representing a new class of dimeric snake toxins, defines novel pharmacology at nicotinic ACh receptors. British Journal of Pharmacology, 2020, 177, 1822-1840.	5.4	12
25	It Takes Two: Dimerization Is Essential for the Broad-Spectrum Predatory and Defensive Activities of the Venom Peptide Mp1a from the Jack Jumper Ant Myrmecia pilosula. Biomedicines, 2020, 8, 185.	3.2	12
26	Nature-inspired dimerization as a strategy to modulate neuropeptide pharmacology exemplified with vasopressin and oxytocin. Chemical Science, 2021, 12, 4057-4062.	7.4	12
27	Synthesis and InÂvitro Biological Activity of Cyclic Lipophilic χ-Conotoxin MrIA Analogues. International Journal of Peptide Research and Therapeutics, 2007, 13, 307-312.	1.9	8
28	Mutational analysis of ProTx-I and the novel venom peptide Pe1b provide insight into residues responsible for selective inhibition of the analgesic drug target NaV1.7. Biochemical Pharmacology, 2020, 181, 114080.	4.4	7
29	Multitarget nociceptor sensitization by a promiscuous peptide from the venom of the King Baboon spider. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
30	Addition of K22 Converts Spider Venom Peptide Pme2a from an Activator to an Inhibitor of NaV1.7. Biomedicines, 2020, 8, 37.	3.2	6
31	The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel NaV1.8 to Enhance Activation. Frontiers in Pharmacology, 2021, 12, 789570.	3.5	4
32	Conotoxin Φâ€MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Antiâ€Apoptotic Activity. Angewandte Chemie, 2017, 129, 15169-15172.	2.0	3
33	The Tarantula Toxin ω-Avsp1a Specifically Inhibits Human CaV3.1 and CaV3.3 via the Extracellular S3-S4 Loop of the Domain 1 Voltage-Sensor. Biomedicines, 2022, 10, 1066.	3.2	2
34	Δâ€Myrtoxinâ€Mp1a is a Helical Heterodimer from the Venom of the Jack Jumper Ant that has Antimicrobial, Membraneâ€Disrupting, and Nociceptive Activities. Angewandte Chemie, 2017, 129, 8615-8619.	2.0	1
35	Novel Human Eag Channel Antagonists from Spider Venoms. Biophysical Journal, 2017, 112, 332a.	0.5	0