Iman Mehdipour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5669948/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of gas flow distributions on CO ₂ mineralization within monolithic cemented composites: coupled CFD-factorial design approach. Reaction Chemistry and Engineering, 2021, 6, 494-504.	1.9	5
2	Controls on CO ₂ Mineralization Using Natural and Industrial Alkaline Solids under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 10727-10739.	3.2	25
3	New insights into the mechanisms of carbon dioxide mineralization by portlandite. AICHE Journal, 2021, 67, e17160.	1.8	14
4	Temperature-Induced Aggregation in Portlandite Suspensions. Langmuir, 2020, 36, 10811-10821.	1.6	7
5	Dispersing nano- and micro-sized portlandite particulates via electrosteric exclusion at short screening lengths. Soft Matter, 2020, 16, 3425-3435.	1.2	6
6	How clay particulates affect flow cessation and the coiling stability of yield stress-matched cementing suspensions. Soft Matter, 2020, 16, 3929-3940.	1.2	2
7	How Microstructure and Pore Moisture Affect Strength Gain in Portlandite-Enriched Composites That Mineralize CO ₂ . ACS Sustainable Chemistry and Engineering, 2019, 7, 13053-13061.	3.2	44
8	Elucidating how particle packing controls rheology and strength development of dense cementitious suspensions. Cement and Concrete Composites, 2019, 104, 103413.	4.6	22
9	Linking fresh paste microstructure, rheology and extrusion characteristics of cementitious binders for 3D printing. Journal of the American Ceramic Society, 2019, 102, 3951-3964.	1.9	59
10	Elucidating the Role of Supplementary Cementitious Materials on Shrinkage and Restrained-Shrinkage Cracking of Flowable Eco-Concrete. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	9
11	Understanding the role of particle packing characteristics in rheo-physical properties of cementitious suspensions: A literature review. Construction and Building Materials, 2018, 161, 340-353.	3.2	102
12	Enhancing the performance of calcium sulfoaluminate blended cements with shrinkage reducing admixture or lightweight sand. Cement and Concrete Composites, 2018, 87, 29-43.	4.6	32
13	Feasibility of using near-field microwave reflectometry for monitoring autogenous crack healing in cementitious materials. Cement and Concrete Composites, 2018, 85, 161-173.	4.6	13
14	lsothermal Stimulation of Mineral Dissolution Processes by Acoustic Perturbation. Journal of Physical Chemistry C, 2018, 122, 28665-28673.	1.5	10
15	Effect of shrinkage reducing admixture on early expansion and strength evolution of calcium sulfoaluminate blended cement. Cement and Concrete Composites, 2018, 92, 82-91.	4.6	21
16	Effect of particle-size distribution and specific surface area of different binder systems on packing density and flow characteristics of cement paste. Cement and Concrete Composites, 2017, 78, 120-131.	4.6	145
17	Rheology, hydration, and strength evolution of interground limestone cement containing PCE dispersant and high volume supplementary cementitious materials. Materials and Design, 2017, 127, 54-66.	3.3	51
18	Use of Near-Field Microwave Reflectometry to Evaluate Steel Fiber Distribution in Cement-Based Mortars. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	8

IMAN MEHDIPOUR

#	Article	IF	CITATIONS
19	Linking Fiber Factor to Material Performance of Fiber-Reinforced Self-Consolidating Cement-Based Materials. ACI Materials Journal, 2017, 114, .	0.3	0
20	Effect of binder composition on time-dependent stability and robustness characteristics of self-consolidating mortar subjected to prolonged agitation. Construction and Building Materials, 2016, 112, 654-665.	3.2	12
21	Evaluation of steel fiber distribution in cement-based mortars using active microwave thermography. Materials and Structures/Materiaux Et Constructions, 2016, 49, 5051-5065.	1.3	33
22	Linking stability characteristics to material performance of self-consolidating concrete-equivalent-mortar incorporating fly ash and metakaolin. Construction and Building Materials, 2016, 105, 206-217.	3.2	19
23	Optimized workability and mechanical properties of FRCM by using fiber factor approach: theoretical and experimental study. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1149-1161.	1.3	48
24	Effect of mineral admixtures on fluidity and stability of self-consolidating mortar subjected to prolonged mixing time. Construction and Building Materials, 2013, 40, 1029-1037.	3.2	58
25	Effect of workability characteristics on the hardened performance of FRSCCMs. Construction and Building Materials, 2013, 40, 611-621.	3.2	43
26	Relationship between workability and mechanical properties of fibre-reinforced self-consolidating mortar. Magazine of Concrete Research, 2013, 65, 1011-1022.	0.9	31