List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5669940/publications.pdf Version: 2024-02-01

FELICITA DEDATA

#	Article	IF	CITATIONS
1	Adenosine in the central nervous system: release mechanisms and extracellular concentrations. Journal of Neurochemistry, 2001, 79, 463-484.	3.9	677
2	Adenosine A2A receptors and brain injury: Broad spectrum of neuroprotection, multifaceted actions and "fine tuning―modulation. Progress in Neurobiology, 2007, 83, 310-331.	5.7	232
3	ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochemistry International, 2005, 47, 442-448.	3.8	227
4	P2X7 Receptor Modulation on Microglial Cells and Reduction of Brain Infarct Caused by Middle Cerebral Artery Occlusion in Rat. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 974-982.	4.3	141
5	Striatal Outflow of Adenosine, Excitatory Amino Acids, γ-Aminobutyric Acid, and Taurine in Awake Freely Moving Rats After Middle Cerebral Artery Occlusion. Stroke, 1999, 30, 2448-2455.	2.0	140
6	Purinergic signalling in brain ischemia. Neuropharmacology, 2016, 104, 105-130.	4.1	135
7	The selective A2A receptor antagonist SCH 58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Research, 2003, 959, 243-250.	2.2	119
8	Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. British Journal of Pharmacology, 1999, 127, 729-739.	5.4	115
9	Adenosine Extracellular Brain Concentrations and Role of A _{2A} Receptors in Ischemia. Annals of the New York Academy of Sciences, 2001, 939, 74-84.	3.8	114
10	Acetylcholine release from rat cortical slices during postnatal development and aging. Neurobiology of Aging, 1983, 4, 31-35.	3.1	108
11	Investigations into the Adenosine Outflow from Hippocampal Slices Evoked by Ischemia-Like Conditions. Journal of Neurochemistry, 1993, 61, 284-289.	3.9	108
12	Differential glutamate-dependent and glutamate-independent adenosine A1receptor-mediated modulation of dopamine release in different striatal compartments. Journal of Neurochemistry, 2007, 101, 355-363.	3.9	104
13	Changes in high affinity choline uptake in rat cortex following lesions of the magnocellular forebrain nuclei. Brain Research, 1982, 233, 359-367.	2.2	99
14	A1 and A2 adenosine receptors modulate acetylcholine release from brain slices. European Journal of Pharmacology, 1984, 97, 341-342.	3.5	94
15	Adenosine and memory storage. Psychopharmacology, 1999, 146, 214-219.	3.1	90
16	Brief, repeated, oxygenâ€glucose deprivation episodes protect neurotransmission from a longer ischemic episode in the <i>in vitro</i> hippocampus: role of adenosine receptors. British Journal of Pharmacology, 2003, 140, 305-314.	5.4	89
17	Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. Brain, 2009, 132, 1480-1495.	7.6	85
18	Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum. Experimental Neurology, 2012, 233, 193-204.	4.1	84

FELICITA PEDATA

#	Article	IF	CITATIONS
19	A2 adenosine receptors: their presence and neuromodulatory role in the central nervous system. General Pharmacology, 1996, 27, 925-933.	0.7	80
20	Modulation of Ischemic Brain Injury and Neuroinflammation by Adenosine A2A Receptors. Current Pharmaceutical Design, 2008, 14, 1490-1499.	1.9	80
21	ATP Modulates Cell Proliferation and Elicits Two Different Electrophysiological Responses in Human Mesenchymal Stem Cells. Stem Cells, 2007, 25, 1840-1849.	3.2	76
22	Striatal A2A adenosine receptors differentially regulate spontaneous and K+-evoked glutamate release in vivo in young and aged rats. NeuroReport, 1999, 10, 687-691.	1.2	74
23	The selective A2A receptor antagonist SCH 58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Research, 2006, 1073-1074, 470-480.	2.2	74
24	Striatal A2A adenosine receptor antagonism differentially modifies striatal glutamate outflow in vivo in young and aged rats. NeuroReport, 2000, 11, 2591-2595.	1.2	72
25	Modification of adenosine extracellular levels and adenosine A2A receptor mRNA by dopamine denervation. European Journal of Pharmacology, 2002, 446, 75-82.	3.5	71
26	A3 adenosine receptor antagonists delay irreversible synaptic failure caused by oxygen and glucose deprivation in the rat CA1 hippocampus in vitro. British Journal of Pharmacology, 2006, 147, 524-532.	5.4	71
27	Phosphatidylserine increases acetylcholine release from cortical slices in aged rats. Neurobiology of Aging, 1985, 6, 337-339.	3.1	69
28	Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow. Neurobiology of Disease, 2004, 17, 77-88.	4.4	66
29	Extracellular Levels of Amino Acids and Choline in Human High Grade Gliomas: An Intraoperative Microdialysis Study. Neurochemical Research, 2004, 29, 325-334.	3.3	65
30	Effect of K+ depolarization, tetrodotoxin, and NMDA receptor inhibition on extracellular adenosine levels in rat striatum. European Journal of Pharmacology, 1993, 234, 61-65.	3.5	63
31	CCS 21680, an Agonist of the Adenosine (A2A) Receptor, Reduces Progression of Murine Type II Collagen-induced Arthritis. Journal of Rheumatology, 2011, 38, 2119-2129.	2.0	62
32	Role of adenosine A3 receptors on CA1 hippocampal neurotransmission during oxygen–glucose deprivation episodes of different duration. Biochemical Pharmacology, 2007, 74, 768-779.	4.4	61
33	Effect of adenosine, adenosine triphosphate, adenosine deaminase, dipyridamole and aminophylline on acetylcholine release from electrically-stimulated brain slices. Neuropharmacology, 1983, 22, 609-614.	4.1	60
34	Effect of A2A adenosine receptor stimulation and antagonism on synaptic depression induced by in vitro ischaemia in rat hippocampal slices. British Journal of Pharmacology, 1999, 128, 1035-1044.	5.4	58
35	New 2-Arylpyrazolo[3,4- <i>c</i>]quinoline Derivatives as Potent and Selective Human A ₃ Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligandâ^'Receptor Modeling Studies. Journal of Medicinal Chemistry, 2007, 50, 4061-4074.	6.4	58
36	Adenosine <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mtext>A</mml:mtext></mml:mrow><mml:mrow><m< td=""><td>.ml:mtext>2/</td><td>۸</td></m<></mml:mrow></mml:msub></mml:mrow></mml:math>	.ml:mtext>2/	۸

36 id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mtext>A</mml:mtext></mml:mrow><mml:mrow><mml:mtext>2A</mml:mtext> Modulate Acute Injury and Neuroinflammation in Brain Ischemia. Mediators of Inflammation, 2014, 2014, 1-16.

#	Article	IF	CITATIONS
37	The adenosine A _{2A} receptor antagonist ZM241385 enhances neuronal survival after oxygenâ€glucose deprivation in rat CA1 hippocampal slices. British Journal of Pharmacology, 2009, 157, 818-830.	5.4	56
38	Selective adenosine A2Areceptor agonists and antagonists protect against spinal cord injury through peripheral and central effects. Journal of Neuroinflammation, 2011, 8, 31.	7.2	56
39	Effect of Adenosine, Adenosine Derivatives, and Caffeine on Acetylcholine Release from Brain Synaptosomes: Interaction with Muscarinic Autoregulatory Mechanisms. Journal of Neurochemistry, 1986, 46, 1593-1598.	3.9	55
40	Interactions among adenosine deaminase, adenosine A1 receptors and dopamine D1 receptors in stably cotransfected fibroblast cells and neurons. Neuroscience, 2002, 113, 709-719.	2.3	55
41	The neuron-astrocyte-microglia triad in a rat model of chronic cerebral hypoperfusion: protective effect of dipyridamole. Frontiers in Aging Neuroscience, 2014, 6, 322.	3.4	53
42	Low doses of the selective adenosine A2A receptor agonist CGS21680 are protective in a rat model of transient cerebral ischemia. Brain Research, 2014, 1551, 59-72.	2.2	52
43	The protective effect of adenosine A2Areceptor antagonism in cerebral ischemia. Neurological Research, 2005, 27, 169-174.	1.3	51
44	Adenosine A2A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures. Neuropharmacology, 2013, 73, 301-310.	4.1	50
45	UDPâ€glucose enhances outward K ⁺ currents necessary for cell differentiation and stimulates cell migration by activating the GPR17 receptor in oligodendrocyte precursors. Glia, 2013, 61, 1155-1171.	4.9	50
46	Regulation of extracellular adenosine levels in the striatum of aging rats. Brain Research, 1995, 684, 103-106.	2.2	48
47	Temporal correlation between adenosine outflow and synaptic potential inhibition in rat hippocampal slices during ischemia-like conditions. Brain Research, 1998, 794, 325-328.	2.2	48
48	Functional characterization of two isoforms of the P2Y-like receptor GPR17: [³⁵ S]GTPγS binding and electrophysiological studies in 1321N1 cells. American Journal of Physiology - Cell Physiology, 2009, 297, C1028-C1040.	4.6	48
49	CGS 21680, an agonist of the adenosine (A2A) receptor, decreases acute lung inflammation. European Journal of Pharmacology, 2011, 668, 305-316.	3.5	47
50	CHANGES IN SYNAPTOSOMAL HIGH AFFINITY CHOLINE UPTAKE FOLLOWING ELECTRICAL STIMULATION OF GUINEAâ€PIG CORTICAL SLICES: EFFECT OF ATROPINE AND PHYSOSTIGMINE. British Journal of Pharmacology, 1981, 74, 525-531.	5.4	46
51	Adenosine Receptors in Cerebral Ischemia. International Review of Neurobiology, 2014, 119, 309-348.	2.0	46
52	Adenosine A2A receptor antagonism increases striatal glutamate outflow in dopamine-denervated rats. European Journal of Pharmacology, 2003, 464, 33-38.	3.5	45
53	The role of ATP and adenosine in the brain under normoxic and ischemic conditions. Purinergic Signalling, 2007, 3, 299-310.	2.2	45
54	Adenosine A3 receptor activation inhibits pronociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons. Pain, 2019, 160, 1103-1118.	4.2	43

#	Article	IF	CITATIONS
55	THE SELECTIVE ADENOSINE A2A RECEPTOR AGONIST CGS 21680 REDUCES JNK MAPK ACTIVATION IN OLIGODENDROCYTES IN INJURED SPINAL CORD. Shock, 2009, 32, 578-585.	2.1	42
56	Effect of choline, phosphorylcholine and dimethylaminoethanol on brain acetylcholine level in the rat. Pharmacological Research Communications, 1977, 9, 755-761.	0.2	39
57	Role of P2 purinergic receptors in synaptic transmission under normoxic and ischaemic conditions in the CA1 region of rat hippocampal slices. Purinergic Signalling, 2007, 3, 203-219.	2.2	38
58	Synthesis, ligand–receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2008, 16, 6086-6102.	3.0	38
59	The Selective Antagonism of Adenosine A2B Receptors Reduces the Synaptic Failure and Neuronal Death Induced by Oxygen and Glucose Deprivation in Rat CA1 Hippocampus in Vitro. Frontiers in Pharmacology, 2018, 9, 399.	3.5	38
60	In vivo regulation of extracellular adenosine levels in the cerebral cortex by NMDA and muscarinic receptors. European Journal of Pharmacology, 1994, 254, 277-282.	3.5	37
61	Regulation of A _{2A} adenosine receptor expression and functioning following permanent focal ischemia in rat brain. Journal of Neurochemistry, 2008, 104, 479-490.	3.9	37
62	Cognitive Impairment with Vascular Impairment and Degeneration. Current Neurovascular Research, 2011, 8, 342-350.	1.1	37
63	In Vivo Amino Acid Release From the Striatum of Aging Rats: Adenosine Modulation. Neurobiology of Aging, 1997, 18, 243-250.	3.1	35
64	Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a New Scaffold To Develop Potent and Selective Human A3 Adenosine Receptor Antagonists. Synthesis, Pharmacological Evaluation, and Ligandâ^'Receptor Modeling Studies. Journal of Medicinal Chemistry, 2009, 52, 2407-2419.	6.4	35
65	Effects of oxygen and glucose deprivation on synaptic transmission in rat dentate gyrus: Role of A2A adenosine receptors. Neuropharmacology, 2013, 67, 511-520.	4.1	35
66	Regional differences in the electrically stimulated release of endogenous and radioactive adenosine and purine derivatives from rat brain slices. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 342, 447-53.	3.0	34
67	The source of brain adenosine outflow during ischemia and electrical stimulation. Neurochemistry International, 1995, 27, 239-244.	3.8	34
68	Effect of N-methyl-d-aspartate on motor activity and in vivo adenosine striatal outflow in the rat. European Journal of Pharmacology, 1999, 385, 15-19.	3.5	34
69	Effect of adenosine A2A receptor stimulation on GABA release from the striatum of young and aged rats in vivo. NeuroReport, 1999, 10, 3933-3937.	1.2	34
70	Adenosine extracellular levels in human brain gliomas: an intraoperative microdialysis study. Neuroscience Letters, 2003, 346, 93-96.	2.1	34
71	The neuron-astrocyte-microglia triad in CA3 after chronic cerebral hypoperfusion in the rat: Protective effect of dipyridamole. Experimental Gerontology, 2017, 96, 46-62.	2.8	34
72	Biphasic effect of methylxanthines on acetylcholine release from electricallyâ€stimulated brain slices. British Journal of Pharmacology, 1984, 83, 69-73.	5.4	33

#	Article	IF	CITATIONS
73	Role of adenosine in oligodendrocyte precursor maturation. Frontiers in Cellular Neuroscience, 2015, 9, 155.	3.7	33
74	Endogenous adenosine release from hippocampal slices excitatory amino acid agonists stimulate release, antagonists reduce the electrically-evoked release. Naunyn-Schmiedeberg's Archives of Pharmacology, 1991, 344, 538-43.	3.0	32
75	3-Hydroxy-1H-quinazoline-2,4-dione derivatives as new antagonists at ionotropic glutamate receptors: Molecular modeling and pharmacological studies. European Journal of Medicinal Chemistry, 2012, 54, 470-482.	5.5	31
76	Amyloid-β oligomer synaptotoxicity is mimicked by oligomers of the model protein HypF-N. Neurobiology of Aging, 2013, 34, 2100-2109.	3.1	31
77	Are the neurochemical and behavioral changes induced by lesions of the nucleus basalis in the rat a model of Alzheimer's disease?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1986, 10, 541-551.	4.8	30
78	P2Y ₁ receptor modulation of Ca ²⁺ -activated K ⁺ currents in medium-sized neurons from neonatal rat striatal slices. Journal of Neurophysiology, 2012, 107, 1009-1021.	1.8	27
79	Actylcholine output from the cerebral cortex, choline uptake and muscarinic receptors in morphine-dependent, freely-moving rats. Neuropharmacology, 1980, 19, 597-605.	4.1	26
80	Effect of intravenous administration of dipyridamole in a rat model of chronic cerebral ischemia. Annals of the New York Academy of Sciences, 2010, 1207, 89-96.	3.8	25
81	Time-course of protection by the selective A2A receptor antagonist SCH58261 after transient focal cerebral ischemia. Neurological Sciences, 2015, 36, 1441-1448.	1.9	25
82	P2 receptor antagonists prevent synaptic failure and extracellular signalâ€regulated kinase1/2 activation induced by oxygen and glucose deprivation in rat CA1 hippocampus <i>in vitro</i> . European Journal of Neuroscience, 2011, 33, 2203-2215.	2.6	24
83	Choline High-Affinity Uptake and Metabolism and Choline Acetyltransferase Activity in the Striatum of Rats Chronically Treated with Neuroleptics. Journal of Neurochemistry, 1980, 35, 606-611.	3.9	23
84	Purinergic modulation of cortical acetylcholine release is decreased in aging rats. Experimental Gerontology, 1988, 23, 175-181.	2.8	22
85	Adenosine A2A antagonism increases striatal glutamate outflow in the quinolinic acid rat model of Huntington's disease. Brain Research, 2003, 979, 225-229.	2.2	22
86	Adenosine A2B receptors inhibit K+ currents and cell differentiation in cultured oligodendrocyte precursor cells and modulate sphingosine-1-phosphate signaling pathway. Biochemical Pharmacology, 2020, 177, 113956.	4.4	22
87	Changes in hippocampal adenosine efflux, ATP levels, and synaptic transmission induced by increased temperature. Synapse, 2001, 41, 58-64.	1.2	21
88	Relationships between neurons expressing neuronal nitric oxide synthase, degree of microglia activation and animal survival. A study in the rat cortex after transient ischemia. Brain Research, 2007, 1132, 218-227.	2.2	21
89	Equilibrative nucleoside transporter ENT1 as a biomarker of Huntington disease. Neurobiology of Disease, 2016, 96, 47-53.	4.4	21
90	Acute visceral pain relief mediated by A3AR agonists in rats: involvement of N-type voltage-gated calcium channels. Pain, 2020, 161, 2179-2190.	4.2	21

#	Article	IF	CITATIONS
91	Chronic caffeine treatment reduces caffeine but not adenosine effects on cortical acetylcholine release. British Journal of Pharmacology, 1986, 88, 671-676.	5.4	20
92	Adenosine is present in rat brain synaptic vesicles. NeuroReport, 2013, 24, 982-987.	1.2	20
93	Inducible nitric oxide synthase appears and is co-expressed with the neuronal isoform in interneurons of the rat hippocampus after transient ischemia induced by middle cerebral artery occlusion. Experimental Neurology, 2008, 211, 433-440.	4.1	19
94	A2B Adenosine Receptors: When Outsiders May Become an Attractive Target to Treat Brain Ischemia or Demyelination. International Journal of Molecular Sciences, 2020, 21, 9697.	4.1	19
95	ADENOSINE A2A RECEPTOR-SELECTIVE STIMULATION REDUCES SIGNALING PATHWAYS INVOLVED IN THE DEVELOPMENT OF INTESTINE ISCHEMIA AND REPERFUSION INJURY. Shock, 2010, 33, 541-551.	2.1	19
96	Expression of neuronal and inducible nitric oxide synthase in neuronal and glial cells after transient occlusion of the middle cerebral artery. Neuroscience, 2005, 136, 1015-1026.	2.3	18
97	Uncovering the Mechanisms of Adenosine Receptor-Mediated Pain Control: Focus on the A3 Receptor Subtype. International Journal of Molecular Sciences, 2021, 22, 7952.	4.1	18
98	The Selective Antagonism of P2X7 and P2Y1 Receptors Prevents Synaptic Failure and Affects Cell Proliferation Induced by Oxygen and Glucose Deprivation in Rat Dentate Gyrus. PLoS ONE, 2014, 9, e115273.	2.5	17
99	Imidazo[1,2-a]pyrazin-8-amine core for the design of new adenosine receptor antagonists: Structural exploration to target the A3 and A2A subtypes. European Journal of Medicinal Chemistry, 2017, 125, 611-628.	5.5	17
100	Functional characterization of a novel adenosine A2B receptor agonist on short-term plasticity and synaptic inhibition during oxygen and glucose deprivation in the rat CA1 hippocampus. Brain Research Bulletin, 2019, 151, 174-180.	3.0	16
101	Muscarinic Modulation of Purine Release from Electrically Stimulated Rat Cortical Slices. Journal of Neurochemistry, 1988, 50, 1074-1079.	3.9	14
102	Protective Effect of Adenosine A2B Receptor Agonist, BAY60-6583, Against Transient Focal Brain Ischemia in Rat. Frontiers in Pharmacology, 2020, 11, 588757.	3.5	14
103	Changes in regional brain acetylcholine levels during drug-induced convulsions. European Journal of Pharmacology, 1976, 40, 329-335.	3.5	11
104	Cholinergic and noradrenergic denervations decrease labelled purine release from electrically stimulated rat cortical slices. Neuroscience, 1989, 32, 629-636.	2.3	11
105	A Selective Histamine H4 Receptor Antagonist, JNJ7777120, Is Protective in a Rat Model of Transient Cerebral Ischemia. Frontiers in Pharmacology, 2018, 9, 1231.	3.5	10
106	Role of Carbonic Anhydrase in Cerebral Ischemia and Carbonic Anhydrase Inhibitors as Putative Protective Agents. International Journal of Molecular Sciences, 2021, 22, 5029.	4.1	10
107	Protective effects of carbonic anhydrase inhibition in brain ischaemia <i>in vitro</i> and <i>in vivo</i> models. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 964-976.	5.2	10
108	New Insight into the Role of Adenosine in Demyelination, Stroke and Neuropathic Pain. Frontiers in Pharmacology, 2020, 11, 625662.	3.5	9

#	Article	IF	CITATIONS
109	The contribution of different types of calcium channels to electrically-evoked adenosine release from rat hippocampal slices. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 355, 250-255.	3.0	7
110	The Controversial Role of Adenosine A2A Receptor Antagonists as Neuro-protective Agents. Current Medicinal Chemistry - Central Nervous System Agents, 2004, 4, 35-45. Multicentre translational Trial of Remote Ischaemic Conditioning in Acute Ischaemic Stroke (TRICS):	0.5	7
111	protocol of multicentre, parallel group, randomised, preclinical trial in female and male rat and mouse from the Italian Stroke Organization (ISO) Basic Science networkMulticentre translational Trial of Remote Ischaemic Conditioning in Acute Ischaemic Stroke (TRICS): protocol of multicentre, parallel group, randomised, preclinical trial in female and male rat and mouse from, BMI Open Science.	1.7	7
112	2020, 44, e100063. Therapeutic Potential of Highly Selective A3 Adenosine Receptor Ligands in the Central and Peripheral Nervous System. Molecules, 2022, 27, 1890.	3.8	7
113	Chapter 29 Principal aspects of the regulation of acetylcholine release in the brain. Progress in Brain Research, 1990, 84, 273-278.	1.4	5
114	Adenosine A3 Receptor Signaling in the Central Nervous System. , 2010, , 165-188.		5
115	Adenosine outflow from hippocampal slices evoked by ischemic-like conditions: Effect of the excitatory amino acid antagonists. Drug Development Research, 1993, 28, 395-398.	2.9	4
116	Effect of idebenone on adenosine outflow and adenine nucleotide level in hippocampal slices under ischemia-like conditions. European Journal of Pharmacology, 1993, 249, 65-70.	3.5	3
117	Acetylcholine modulates K + and Na + currents in human basal forebrain cholinergic neuroblasts through an autocrine/paracrine mechanism. Journal of Neurochemistry, 2021, 157, 1182-1195.	3.9	3
118	A2B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Frontiers in Neuroscience, 2021, 15, 677988.	2.8	3
119	Adenosine and Stroke. , 2013, , 273-306.		1
120	Human keloid cultured fibroblasts irradiated with blue LED light: evidence from an in vitro study. , 2019, , .		1
121	Cortical adenosine and inosine release in freely moving rats by means of transversal dialysis technique. Pharmacological Research, 1990, 22, 384.	7.1	0
122	Release of adenosine in the central nervous system. Pharmacological Research, 1990, 22, 385.	7.1	0
123	Adenosine and adenine nucleotide level in hippocampal slices under ischaemia-like conditions: effect of idebenone. Pharmacological Research, 1994, 30, 357.	7.1	0
124	Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures. Proceedings of SPIE, 2016, , .	0.8	0
125	Adenosine: A Relevant Role in Hypoxia. Journal of Caffeine and Adenosine Research, 2020, 10, 2-3.	0.6	0

Adenosine and Oxygen/Glucose Deprivation in the Brain. , 2017, , 151-173.

0

#	Article	IF	CITATIONS
127	Adenosine and Oxygen/Glucose Deprivation in the Brain. , 2018, , 351-378.		0
128	Blue light-irradiated human keloid fibroblasts: an in vitro study. , 2018, , .		0
129	Blue light effects in human keloid fibroblasts. , 2019, , .		0