
Qinglin Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5669355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A perspective on Quality-by-Control (QbC) in pharmaceutical continuous manufacturing. Computers and Chemical Engineering, 2019, 125, 216-231.	3.8	110
2	Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: Modelling, design, and control. Chemical Engineering and Processing: Process Intensification, 2015, 89, 41-53.	3.6	102
3	Mathematical Modeling, Design, and Optimization of a Multisegment Multiaddition Plug-Flow Crystallizer for Antisolvent Crystallizations. Organic Process Research and Development, 2015, 19, 1859-1870.	2.7	43
4	Mathematical modelling and experimental validation of a novel periodic flow crystallization using MSMPR crystallizers. AICHE Journal, 2017, 63, 1313-1327.	3.6	38
5	Design and Commercialization of an End-to-End Continuous Pharmaceutical Production Process: A Pilot Plant Case Study. Organic Process Research and Development, 2020, 24, 2874-2889.	2.7	33
6	A Systematic Framework for Process Control Design and Risk Analysis in Continuous Pharmaceutical Solid-Dosage Manufacturing. Journal of Pharmaceutical Innovation, 2017, 12, 327-346.	2.4	30
7	Data reconciliation in the Quality-by-Design (QbD) implementation of pharmaceutical continuous tablet manufacturing. International Journal of Pharmaceutics, 2019, 563, 259-272.	5.2	26
8	Robust state estimation of feeding–blending systems in continuous pharmaceutical manufacturing. Chemical Engineering Research and Design, 2018, 134, 140-153.	5.6	22
9	Design of condition-based maintenance framework for process operations management in pharmaceutical continuous manufacturing. International Journal of Pharmaceutics, 2020, 587, 119621.	5.2	18
10	Integrated B2Bâ€NMPC control strategy for batch/semibatch crystallization processes. AICHE Journal, 2017, 63, 5007-5018.	3.6	17
11	Resilience and risk analysis of fault-tolerant process control design in continuous pharmaceutical manufacturing. Journal of Loss Prevention in the Process Industries, 2018, 55, 411-422.	3.3	13
12	Continuous reactive crystallization of an API in PFR-CSTR cascade with in-line PATs. Reaction Chemistry and Engineering, 2020, 5, 1950-1962.	3.7	13
13	Variation and Risk Analysis in Tablet Press Control for Continuous Manufacturing of Solid Dosage via Direct Compaction. Computer Aided Chemical Engineering, 2018, 44, 679-684.	0.5	10
14	Sensor Network Robustness Using Model-Based Data Reconciliation for Continuous Tablet Manufacturing. Journal of Pharmaceutical Sciences, 2019, 108, 2599-2612.	3.3	8
15	Modeling the electrostatic effect on the hydrodynamic behavior in FCC risers: From understanding to application. Particuology, 2016, 25, 122-132.	3.6	7
16	Steady-State Data Reconciliation Framework for a Direct Continuous Tableting Line. Journal of Pharmaceutical Innovation, 2019, 14, 221-238.	2.4	6
17	Dynamic impact milling model with a particle-scale breakage kernel. Computer Aided Chemical Engineering, 2016, , 475-480.	0.5	4

Advancing smart manufacturing in the pharmaceutical industry. , 2020, , 21-57.

QINGLIN SU

#	Article	IF	CITATIONS
19	Continuous Feeding-Blending in Pharmaceutical Continuous Manufacturing. AAPS Advances in the Pharmaceutical Sciences Series, 2020, , 193-226.	0.6	3
20	Simultaneous design and control framework for multi-segment multi-addition plug-flow crystallizer for anti-solvent crystallizations. , 2015, , .		2
21	A Quality-by-Control Approach in Pharmaceutical Continuous Manufacturing of Oral Solid Dosage via Direct Compaction. Computer Aided Chemical Engineering, 2019, 46, 1327-1332.	0.5	1
22	Active Process Control in Pharmaceutical Continuous Manufacturing – The Quality by Control (QbC) Paradigm. AAPS Advances in the Pharmaceutical Sciences Series, 2020, , 395-427.	0.6	1