
Floor van der Hilst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5669240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of landâ€use change emissions on the potential of bioenergy as climate change mitigation option for a Brazilian lowâ€carbon energy system. GCB Bioenergy, 2022, 14, 110-131.	5.6	9
2	Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region. Journal of Environmental Management, 2022, 303, 114137.	7.8	8
3	Bioenergy potential from invasive alien plants: Environmental and socio-economic impacts in Eastern Cape, South Africa. Biomass and Bioenergy, 2022, 158, 106340.	5.7	6
4	Land use for bioenergy: Synergies and trade-offs between sustainable development goals. Renewable and Sustainable Energy Reviews, 2022, 161, 112409.	16.4	38
5	Low-ILUC-risk rapeseed biodiesel: potential and indirect GHG emission effects in Eastern Romania. Biofuels, 2021, 12, 171-186.	2.4	11
6	Mapping the environmental and technoâ€economic potential of biojet fuel production from biomass residues in Brazil. Biofuels, Bioproducts and Biorefining, 2021, 15, 282-304.	3.7	16
7	Hydrological impacts of ethanol-driven sugarcane expansion in Brazil. Journal of Environmental Management, 2021, 282, 111942.	7.8	10
8	GHG Balance of Agricultural Intensification & Bioenergy Production in the Orinoquia Region, Colombia. Land, 2021, 10, 289.	2.9	11
9	Applying a scienceâ€based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy, 2021, 13, 1210-1231.	5.6	49
10	Supply potential of lignocellulosic energy crops grown on marginal land and greenhouse gas footprint of advanced biofuels—A spatially explicit assessment under the sustainability criteria of the Renewable Energy Directive Recast. GCB Bioenergy, 2021, 13, 1425-1447.	5.6	11
11	Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling. Ecological Indicators, 2021, 129, 107870.	6.3	18
12	Sustainable intensification of crop residue exploitation for bioenergy: Opportunities and challenges. GCB Bioenergy, 2020, 12, 71-89.	5.6	20
13	Spatial assessment of the techno-economic potential of bioelectricity production from sugarcane straw. Renewable Energy, 2020, 156, 1313-1324.	8.9	4
14	The distribution of food security impacts of biofuels, a Ghana case study. Biomass and Bioenergy, 2020, 141, 105695.	5.7	31
15	Spatial Variation in Environmental Impacts of Sugarcane Expansion in Brazil. Land, 2020, 9, 397.	2.9	15
16	Spatial modeling of technoâ€economic potential of biojet fuel production in Brazil. GCB Bioenergy, 2020, 12, 136-157.	5.6	20
17	Biodiversity Impacts of Increased Ethanol Production in Brazil. Land, 2020, 9, 12.	2.9	8
18	How does the interplay between resource availability, intersectoral competition and reliability affect a low-carbon power generation mix in Brazil for 2050?. Energy, 2020, 195, 116948.	8.8	13

2

FLOOR VAN DER HILST

#	Article	IF	CITATIONS
19	Economic performance and GHG emission intensity of sugarcane―and eucalyptusâ€derived biofuels and biobased chemicals in Brazil. Biofuels, Bioproducts and Biorefining, 2019, 13, 950-977.	3.7	17
20	Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods. Renewable and Sustainable Energy Reviews, 2019, 115, 109352.	16.4	21
21	Pathways for a Brazilian biobased economy: towards optimal utilization of biomass. Biofuels, Bioproducts and Biorefining, 2019, 13, 673-689.	3.7	21
22	Bioelectricity potential from ecologically available sugarcane straw in Brazil: A spatially explicit assessment. Biomass and Bioenergy, 2019, 122, 391-399.	5.7	28
23	Interregional assessment of socio-economic effects of sugarcane ethanol production in Brazil. Renewable and Sustainable Energy Reviews, 2018, 88, 347-362.	16.4	42
24	Mapping land use changes resulting from biofuel production and the effect of mitigation measures. GCB Bioenergy, 2018, 10, 804-824.	5.6	33
25	Carbon balance and economic performance of pine plantations for bioenergy production in the Southeastern United States. Biomass and Bioenergy, 2018, 117, 44-55.	5.7	21
26	Impact of increased wood pellet demand on biodiversity in the southâ€eastern United States. GCB Bioenergy, 2018, 10, 841-860.	5.6	11
27	How a Pareto frontier complements scenario projections in land use change impact assessment. Environmental Modelling and Software, 2017, 97, 287-302.	4.5	19
28	Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the southâ€eastern United States using different softwood feedstocks. GCB Bioenergy, 2017, 9, 1406-1422.	5.6	33
29	Modeling the impacts of wood pellet demand on forest dynamics in southeastern United States. Biofuels, Bioproducts and Biorefining, 2017, 11, 1007-1029.	3.7	39
30	What can and can't we say about indirect landâ€use change in Brazil using an integrated economic – landâ€use change model?. GCB Bioenergy, 2016, 8, 561-578.	5.6	45
31	Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil. Applied Energy, 2016, 173, 494-510.	10.1	67
32	Detecting systemic change in a land use system by Bayesian data assimilation. Environmental Modelling and Software, 2016, 75, 424-438.	4.5	39
33	Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies. Applied Energy, 2015, 147, 593-610.	10.1	89
34	Model collaboration for the improved assessment of biomass supply, demand, and impacts. GCB Bioenergy, 2015, 7, 422-437.	5.6	54
35	Optimization potential of biomass supply chains with torrefaction technology. Biofuels, Bioproducts and Biorefining, 2014, 8, 253-282.	3.7	42
36	Integrated spatiotemporal modelling of bioenergy production potentials, agricultural land use, and related GHG balances; demonstrated for Ukraine. Biofuels, Bioproducts and Biorefining, 2014, 8, 391-411.	3.7	14

FLOOR VAN DER HILST

#	Article	IF	CITATIONS
37	Biodiversity impacts of bioenergy crop production: a stateâ€ofâ€theâ€art review. GCB Bioenergy, 2014, 6, 183-209.	5.6	194
38	Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study. Renewable and Sustainable Energy Reviews, 2014, 34, 208-224.	16.4	24
39	Identifying a land use change cellular automaton by Bayesian data assimilation. Environmental Modelling and Software, 2014, 53, 121-136.	4.5	38
40	Spatiotemporal costâ€supply curves for bioenergy production in Mozambique. Biofuels, Bioproducts and Biorefining, 2012, 6, 405-430.	3.7	20
41	Spatio-temporal uncertainty in Spatial Decision Support Systems: A case study of changing land availability for bioenergy crops in Mozambique. Computers, Environment and Urban Systems, 2012, 36, 30-42.	7.1	45
42	Spatiotemporal land use modelling to assess land availability for energy crops – illustrated for <scp>M</scp> ozambique. GCB Bioenergy, 2012, 4, 859-874.	5.6	30
43	Spatial variation of environmental impacts of regional biomass chains. Renewable and Sustainable Energy Reviews, 2012, 16, 2053-2069.	16.4	44
44	Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example. Agricultural Systems, 2010, 103, 403-417.	6.1	42