Rieta Gols

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5669173/publications.pdf Version: 2024-02-01

RIETA COLS

#	Article	IF	CITATIONS
1	Plant Interactions with Multiple Insect Herbivores: From Community to Genes. Annual Review of Plant Biology, 2014, 65, 689-713.	18.7	361
2	Crop Domestication and Its Impact on Naturally Selected Trophic Interactions. Annual Review of Entomology, 2015, 60, 35-58.	11.8	316
3	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1907-1922.	1.8	292
4	GENETIC VARIATION IN DEFENSE CHEMISTRY IN WILD CABBAGES AFFECTS HERBIVORES AND THEIR ENDOPARASITOIDS. Ecology, 2008, 89, 1616-1626.	3.2	193
5	Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. Journal of Animal Ecology, 2003, 72, 520-531.	2.8	181
6	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	7.8	176
7	Performance of Generalist and Specialist Herbivores and their Endoparasitoids Differs on Cultivated and Wild Brassica Populations. Journal of Chemical Ecology, 2008, 34, 132-143.	1.8	169
8	Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos, 2007, 116, 367-376.	2.7	157
9	Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels. PLoS ONE, 2012, 7, e43607.	2.5	152
10	Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochemistry Reviews, 2009, 8, 187-206.	6.5	130
11	Development of the parasitoid, Cotesia rubecula (Hymenoptera: Braconidae) in Pieris rapae and Pieris brassicae (Lepidoptera: Pieridae): evidence for host regulation. Journal of Insect Physiology, 1999, 45, 173-182.	2.0	118
12	Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Functional Ecology, 2013, 27, 587-598.	3.6	114
13	Climate changeâ€mediated temperature extremes and insects: From outbreaks to breakdowns. Global Change Biology, 2020, 26, 6685-6701.	9.5	114
14	Induction of Direct and Indirect Plant Responses by Jasmonic Acid, Low Spider Mite Densities, or a Combination of Jasmonic Acid Treatment and Spider Mite Infestation. Journal of Chemical Ecology, 2003, 29, 2651-2666.	1.8	112
15	Jasmonate and ethylene signaling mediate whiteflyâ€induced interference with indirect plant defense in <i>Arabidopsis thaliana</i> . New Phytologist, 2013, 197, 1291-1299.	7.3	109
16	Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia, 2009, 160, 299-308.	2.0	106
17	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.	7.3	101
18	Variation In Plant Volatiles and Attraction Of The ParasitoidDiadegma semiclausum(Hellén). Journal of Chemical Ecology, 2005, 31, 461-480.	1.8	96

#	Article	IF	CITATIONS
19	Symbionts protect aphids from parasitic wasps by attenuating herbivore-induced plant volatiles. Nature Communications, 2017, 8, 1860.	12.8	96
20	Direct and indirect chemical defences against insects in a multitrophic framework. Plant, Cell and Environment, 2014, 37, 1741-1752.	5.7	91
21	Reduced foraging efficiency of a parasitoid under habitat complexity: implications for population stability and species coexistence. Journal of Animal Ecology, 2005, 74, 1059-1068.	2.8	87
22	Smelling the Wood from the Trees: Non-Linear Parasitoid Responses to Volatile Attractants Produced by Wild and Cultivated Cabbage. Journal of Chemical Ecology, 2011, 37, 795-807.	1.8	85
23	Reciprocal crosstalk between jasmonate and salicylate defence-signalling pathways modulates plant volatile emission and herbivore host-selection behaviour. Journal of Experimental Botany, 2014, 65, 3289-3298.	4.8	80
24	Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid. Journal of Chemical Ecology, 2012, 38, 100-115.	1.8	77
25	Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomologia Experimentalis Et Applicata, 1999, 93, 77-86.	1.4	71
26	Effects of dietary nicotine on the development of an insect herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels. Ecological Entomology, 2007, 32, 15-23.	2.2	68
27	Are population differences in plant quality reflected in the preference and performance of two endoparasitoid wasps?. Oikos, 2009, 118, 733-742.	2.7	68
28	Caterpillarâ€induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or nonâ€host insect herbivore. Plant, Cell and Environment, 2014, 37, 1924-1935.	5.7	66
29	Ecological fits, mis-fits and lotteries involving insect herbivores on the invasive plant, Bunias orientalis. Biological Invasions, 2010, 12, 3045-3059.	2.4	64
30	Bidirectional Secretions from Glandular Trichomes of Pyrethrum Enable Immunization of Seedlings. Plant Cell, 2012, 24, 4252-4265.	6.6	62
31	Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC Plant Biology, 2017, 17, 127.	3.6	61
32	Reproductive escape: annual plant responds to butterfly eggs by accelerating seed production. Functional Ecology, 2013, 27, 245-254.	3.6	60
33	The effect of different dietary sugars and honey on longevity and fecundity in two hyperparasitoid wasps. Journal of Insect Physiology, 2012, 58, 816-823.	2.0	59
34	Defensive insect symbiont leads to cascading extinctions and community collapse. Ecology Letters, 2016, 19, 789-799.	6.4	58
35	Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia, 2011, 166, 421-431.	2.0	55
36	Development of an Insect Herbivore and its Pupal Parasitoid Reflect Differences in Direct Plant Defense. Journal of Chemical Ecology, 2007, 33, 1556-1569.	1.8	54

#	Article	IF	CITATIONS
37	Plant domestication decreases both constitutive and induced chemical defences by direct selection against defensive traits. Scientific Reports, 2018, 8, 12678.	3.3	54
38	Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis. Journal of Chemical Ecology, 2001, 27, 1355-1372.	1.8	52
39	Temporal changes affect plant chemistry and tritrophic interactions. Basic and Applied Ecology, 2007, 8, 421-433.	2.7	52
40	Volatile-mediated foraging behaviour of three parasitoid species under conditions of dual insect herbivore attack. Animal Behaviour, 2016, 111, 197-206.	1.9	50
41	Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage. Ecology Letters, 2017, 20, 87-97.	6.4	50
42	Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the predatory mite Phytoseiulus persimilis. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 465-469.	1.7	49
43	Complex tritrophic interactions in response to crop domestication: predictions from the wild. Entomologia Experimentalis Et Applicata, 2015, 157, 40-59.	1.4	47
44	Fitness consequences of indirect plant defence in the annual weed, <i><scp>S</scp>inapis arvensis</i> . Functional Ecology, 2015, 29, 1019-1025.	3.6	45
45	Variation in the specificity of plant volatiles and their use by a specialist and a generalist parasitoid. Animal Behaviour, 2012, 83, 1231-1242.	1.9	42
46	The effect of direct and indirect defenses in two wild brassicaceous plant species on a specialist herbivore and its gregarious endoparasitoid. Entomologia Experimentalis Et Applicata, 2008, 128, 99-108.	1.4	40
47	Time allocation of a parasitoid foraging in heterogeneous vegetation: implications for host?parasitoid interactions. Journal of Animal Ecology, 2007, 76, 845-853.	2.8	39
48	Intrinsic competition and its effects on the survival and development of three species of endoparasitoid wasps. Entomologia Experimentalis Et Applicata, 2009, 130, 238-248.	1.4	39
49	Dual herbivore attack and herbivore density affect metabolic profiles of <i>Brassica nigra</i> leaves. Plant, Cell and Environment, 2017, 40, 1356-1367.	5.7	39
50	Indirect plant-mediated interactions among parasitoid larvae. Ecology Letters, 2011, 14, 670-676.	6.4	38
51	Behaviour of male and female parasitoids in the field: influence of patch size, host density, and habitat complexity. Ecological Entomology, 2010, 35, 341-351.	2.2	36
52	Plantâ€mediated effects of butterfly egg deposition on subsequent caterpillar and pupal development, across different species of wild Brassicaceae. Ecological Entomology, 2015, 40, 444-450.	2.2	36
53	Rain downpours affect survival and development of insect herbivores: the specter of climate change?. Ecology, 2019, 100, e02819.	3.2	36
54	Nutritional ecology of the interaction between larvae of the gregarious ectoparasitoid, Muscidifurax raptorellus (Hymenoptera: Pteromalidae), and their pupal host, Musca domestica (Diptera: Muscidae). Physiological Entomology, 1998, 23, 113-120.	1.5	34

#	Article	IF	CITATIONS
55	Differential induction of plant chemical defenses by parasitized and unparasitized herbivores: consequences for reciprocal, multitrophic interactions. Oikos, 2016, 125, 1398-1407.	2.7	34
56	Population-Related Variation in Plant Defense more Strongly Affects Survival of an Herbivore than Its Solitary Parasitoid Wasp. Journal of Chemical Ecology, 2011, 37, 1081-1090.	1.8	33
57	Food plant and herbivore host species affect the outcome of intrinsic competition among parasitoid larvae. Ecological Entomology, 2014, 39, 693-702.	2.2	33
58	Comparing the physiological effects and function of larval feeding in closelyâ€related endoparasitoids (Braconidae: Microgastrinae). Physiological Entomology, 2008, 33, 217-225.	1.5	32
59	Intra-specific variation in wild Brassica oleracea for aphid-induced plant responses and consequences for caterpillar–parasitoid interactions. Oecologia, 2014, 174, 853-862.	2.0	32
60	Habitat complexity reduces parasitoid foraging efficiency, but does not prevent orientation towards learned host plant odours. Oecologia, 2015, 179, 353-361.	2.0	31
61	Compatible and incompatible pathogen–plant interactions differentially affect plant volatile emissions and the attraction of parasitoid wasps. Functional Ecology, 2016, 30, 1779-1789.	3.6	31
62	Combined effects of patch size and plant nutritional quality on local densities of insect herbivores. Basic and Applied Ecology, 2010, 11, 396-405.	2.7	30
63	The importance of aboveground–belowground interactions on the evolution and maintenance of variation in plant defense traits. Frontiers in Plant Science, 2013, 4, 431.	3.6	29
64	Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission. Journal of Experimental Botany, 2014, 65, 4821-4831.	4.8	29
65	To be in time: egg deposition enhances plant-mediated detection of young caterpillars by parasitoids. Oecologia, 2015, 177, 477-486.	2.0	29
66	Interactions Between a Belowground Herbivore and Primary and Secondary Root Metabolites in Wild Cabbage. Journal of Chemical Ecology, 2015, 41, 696-707.	1.8	29
67	Seasonal phenology of interactions involving shortâ€lived annual plants, a multivoltine herbivore and its endoparasitoid wasp. Journal of Animal Ecology, 2014, 83, 234-244.	2.8	28
68	Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica) Tj ETQqO O O rgBT $/$	Overlock 1	0 Tf 50 222 T
69	Impact of Botanical Pesticides Derived from Melia azedarach and Azadirachta indica Plants on the Emission of Volatiles that Attract Parasitoids of the Diamondback Moth to Cabbage Plants. Journal of Chemical Ecology, 2006, 32, 325-349.	1.8	27
70	Intrinsic competition among solitary and gregarious endoparasitoid wasps and the phenomenon of â€~resource sharing'. Ecological Entomology, 2012, 37, 65-74.	2.2	27
71	Insect eggâ€killing: a new front on the evolutionary armsâ€race between brassicaceous plants and pierid butterflies. New Phytologist, 2021, 230, 341-353.	7.3	27
72	The roles of ecological fitting, phylogeny and physiological equivalence in understanding realized and fundamental host ranges in endoparasitoid wasps. Journal of Evolutionary Biology, 2012, 25, 2139-2148.	1.7	26

#	Article	IF	CITATIONS
73	Differential effects of climate warming on reproduction and functional responses on insects in the fourth trophic level. Functional Ecology, 2019, 33, 693-702.	3.6	26
74	The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom. MicrobiologyOpen, 2020, 9, e00954.	3.0	26
75	Variation in plant defences among populations of a rangeâ€expanding plant: consequences for trophic interactions. New Phytologist, 2014, 204, 989-999.	7.3	25
76	Development and host utilization in Hyposoter ebeninus (Hymenoptera: Ichneumonidae), a solitary endoparasitoid of Pieris rapae and P. brassicae caterpillars (Lepidoptera: Pieridae). Biological Control, 2010, 53, 312-318.	3.0	24
77	Interactive Effects of Cabbage Aphid and Caterpillar Herbivory on Transcription of Plant Genes Associated with Phytohormonal Signalling in Wild Cabbage. Journal of Chemical Ecology, 2016, 42, 793-805.	1.8	23
78	Novel bacterial pathogen Acaricomes phytoseiuli causes severe disease symptoms and histopathological changes in the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae). Journal of Invertebrate Pathology, 2008, 98, 127-135.	3.2	22
79	Paternity Analysis in a Hexapod (Orchesella cincta; Collembola) with Indirect Sperm Transfer. Journal of Insect Behavior, 2004, 17, 317-328.	0.7	21
80	With or without you: Effects of the concurrent range expansion of an herbivore and its natural enemy on native species interactions. Global Change Biology, 2018, 24, 631-643.	9.5	21
81	The â€~usurpation hypothesis' revisited: dying caterpillar repels attack from a hyperparasitoid wasp. Animal Behaviour, 2011, 81, 1281-1287.	1.9	20
82	Effects of population-related variation in plant primary and secondary metabolites on aboveground and belowground multitrophic interactions. Chemoecology, 2016, 26, 219-233.	1.1	20
83	Consequences of constitutive and induced variation in the host's food plant quality for parasitoid larval development. Journal of Insect Physiology, 2012, 58, 367-375.	2.0	19
84	Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Molecular Ecology, 2020, 29, 4014-4031.	3.9	19
85	PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis (Acari: Phytoseiidae). Biological Control, 2007, 42, 316-325.	3.0	18
86	Development of a hyperparasitoid wasp in different stages of its primary parasitoid and secondary herbivore hosts. Journal of Insect Physiology, 2012, 58, 1463-1468.	2.0	18
87	Community structure and abundance of insects inÂresponse to earlyâ€season aphid infestation in wild cabbage populations. Ecological Entomology, 2016, 41, 378-388.	2.2	15
88	Direct and indirect genetic effects in life-history traits of flour beetles (<i>Tribolium castaneum</i>). Evolution; International Journal of Organic Evolution, 2016, 70, 207-217.	2.3	14
89	Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp. PLoS ONE, 2016, 11, e0149539.	2.5	14
90	Population genetic structure of Orchesella cincta (Collembola; Hexapoda) in NW Europe, as revealed by microsatellite markers. Pedobiologia, 2005, 49, 167-174.	1.2	13

#	Article	IF	CITATIONS
91	The effect of host developmental stage at parasitism on sexâ€related size differentiation in a larval endoparasitoid. Ecological Entomology, 2009, 34, 755-762.	2.2	13
92	Development of Mamestra brassicae and its solitary endoparasitoid Microplitis mediator on two populations of the invasive weed Bunias orientalis. Population Ecology, 2011, 53, 587-596.	1.2	13
93	Host preference and offspring performance are linked in three congeneric hyperparasitoid species. Ecological Entomology, 2015, 40, 114-122.	2.2	13
94	Honey and honey-based sugars partially affect reproductive trade-offs in parasitoids exhibiting different life-history and reproductive strategies. Journal of Insect Physiology, 2017, 98, 134-140.	2.0	13
95	Convergence and Divergence in Direct and Indirect Life-History Traits of Closely Related Parasitoids (Braconidae: Microgastrinae). Evolutionary Biology, 2014, 41, 134-144.	1.1	12
96	Does Aphid Infestation Interfere with Indirect Plant Defense against Lepidopteran Caterpillars in Wild Cabbage?. Journal of Chemical Ecology, 2017, 43, 493-505.	1.8	12
97	Oviposition Preference for Young Plants by the Large Cabbage Butterfly (Pieris brassicae) Does not Strongly Correlate with Caterpillar Performance. Journal of Chemical Ecology, 2017, 43, 617-629.	1.8	12
98	Responses of insect herbivores and their food plants to wind exposure and the importance of predation risk. Journal of Animal Ecology, 2018, 87, 1046-1057.	2.8	12
99	Short-term seasonal habitat facilitation mediated by an insect herbivore. Basic and Applied Ecology, 2016, 17, 447-454.	2.7	11
100	Effects of plant-mediated differences in host quality on the development of two related endoparasitoids with different host-utilization strategies. Journal of Insect Physiology, 2018, 107, 110-115.	2.0	11
101	Enter the matrix: How to analyze the structure of behavior. Behavior Research Methods, 2006, 38, 357-363.	4.0	10
102	Development of a generalist predator, Podisus maculiventris, on glucosinolate sequestering and nonsequestering prey. Die Naturwissenschaften, 2014, 101, 707-714.	1.6	10
103	Differing Host Exploitation Efficiencies in Two Hyperparasitoids: When is a â€~Match Made in Heaven'?. Journal of Insect Behavior, 2011, 24, 282-292.	0.7	9
104	Differing Success of Defense Strategies in Two Parasitoid Wasps in Protecting their Pupae Against a Secondary Hyperparasitoid. Annals of the Entomological Society of America, 2011, 104, 1005-1011.	2.5	9
105	Effect of Sequential Induction by Mamestra brassicae L. and Tetranychus urticae Koch on Lima Bean Plant Indirect Defense. Journal of Chemical Ecology, 2014, 40, 977-985.	1.8	8
106	Reproduction and Offspring Sex Ratios Differ Markedly among Closely Related Hyperparasitoids Living in the Same Microhabitats. Journal of Insect Behavior, 2019, 32, 243-251.	0.7	8
107	Reprotoxic effects of the systemic insecticide fipronil on the butterfly <i>Pieris brassicae</i> . Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192665.	2.6	8
108	A bodyguard or a tastier meal? Dying caterpillar indirectly protects parasitoid cocoons by offering alternate prey to a generalist predator. Entomologia Experimentalis Et Applicata, 2013, 149, 219-228.	1.4	7

#	Article	lF	CITATIONS
109	Simulated heatwave conditions associated with global warming affect development and competition between hyperparasitoids. Oikos, 2019, 128, 1783-1792.	2.7	7
110	Varying degree of physiological integration among host instars and their endoparasitoid affects stressâ€induced mortality. Entomologia Experimentalis Et Applicata, 2019, 167, 424-432.	1.4	7
111	The effect of rearing history and aphid density on volatileâ€mediated foraging behaviour of <i>Diaeretiella rapae</i> . Ecological Entomology, 2019, 44, 255-264.	2.2	7
112	Within-patch and edge microclimates vary over a growing season and are amplified during a heatwave: Consequences for ectothermic insects. Journal of Thermal Biology, 2021, 99, 103006.	2.5	7
113	Reciprocal interactions between native and introduced populations of common milkweed, Asclepias syriaca, and the specialist aphid, Aphis nerii. Basic and Applied Ecology, 2014, 15, 444-452.	2.7	6
114	Integrating Insect Life History and Food Plant Phenology: Flexible Maternal Choice Is Adaptive. International Journal of Molecular Sciences, 2016, 17, 1263.	4.1	6
115	Development of a solitary koinobiont hyperparasitoid in different instars of its primary and secondary hosts. Journal of Insect Physiology, 2016, 90, 36-42.	2.0	5
116	Ant-like Traits in Wingless Parasitoids Repel Attack from Wolf Spiders. Journal of Chemical Ecology, 2018, 44, 894-904.	1.8	5
117	Microsatellite loci in the soil-dwelling collembolan, Orchesella cincta. Molecular Ecology Notes, 2001, 1, 182-184.	1.7	4
118	Dynamics of plant secondary metabolites and consequences for food chains and community dynamics. , 2012, , 308-328.		4
119	Effect of host ocoon mass on adult size in the secondary hyperparasitoid wasp,â€, <i>Pteromalus semotus</i> â€,(Hymenoptera: Pteromalidae). Insect Science, 2012, 19, 383-390.	3.0	4
120	Oviposition preference of three lepidopteran species is not affected by previous aphid infestation in wild cabbage. Entomologia Experimentalis Et Applicata, 2018, 166, 402-411.	1.4	4
121	Development and oviposition strategies in two congeneric gregarious larval-pupal endoparasitoids of the seven-spot ladybird, Coccinella septempunctata. Biological Control, 2021, 163, 104756.	3.0	4
122	Black and Garlic Mustard Plants Are Highly Suitable for the Development of Two Native Pierid Butterflies. Environmental Entomology, 2016, 45, 671-676.	1.4	3
123	Population- and Species-Based Variation of Webworm–Parasitoid Interactions in Hogweeds (Heracelum spp.) in the Netherlands. Environmental Entomology, 2020, 49, 924-930.	1.4	3
124	Invasive moth facilitates use of a native food plant by other native and invasive arthropods. Ecological Research, 2019, 34, 659-666.	1.5	2
125	Variation in Performance and Resistance to Parasitism of Plutella xylostella Populations. Insects, 2019, 10, 293.	2.2	2
126	Herbivore-induced plant volatiles, not natural enemies, mediate a positive indirect interaction between insect herbivores. Oecologia, 2022, 198, 443.	2.0	2

#	Article	IF	CITATIONS
127	Plant quantity affects development and reproduction of a gregarious butterfly more than plant quality. Entomologia Experimentalis Et Applicata, 0, , .	1.4	2
128	Effects of extreme temperature events on the parasitism performance of <i>Diadegma semiclausum</i> , an endoparasitoid of <i>Plutella xylostella</i> . Entomologia Experimentalis Et Applicata, 2022, 170, 656-665.	1.4	2
129	Specialist root herbivore modulates plant transcriptome and downregulates defensive secondary metabolites in a brassicaceous plant. New Phytologist, 2022, 235, 2378-2392.	7.3	2
130	Editorial overview: Ecology: Ecology of plant insect interactions: the role of plant chemistry. Current Opinion in Insect Science, 2015, 8, iv-vi.	4.4	0
131	Rain Downpours Affect Survival and Development of Insect Herbivores: The Specter of Climate Change?. Bulletin of the Ecological Society of America, 2019, 100, e01604.	0.2	0