W Polini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5668955/publications.pdf

Version: 2024-02-01

61 papers	1,173 citations	20 h-index	414414 32 g-index
pupero	citationo	II IIIUOX	g mack
62 all docs	62 docs citations	62 times ranked	821 citing authors

#	Article	IF	CITATIONS
1	Influence of the Initial Blank Geometry on the Final Thickness Distribution of the Hemispheres in Superplastic AZ31 Alloy. Applied Sciences (Switzerland), 2022, 12, 1912.	2.5	1
2	Two numerical tools for geometrical deviation management in composite assemblies: a comparison. Journal of Composite Materials, 2021, 55, 1185-1196.	2.4	1
3	Digital twin of stone sawing processes. International Journal of Advanced Manufacturing Technology, 2021, 112, 121-131.	3.0	8
4	A Geometric Algorithm to Evaluate the Thickness Distribution of Stretched Sheets through Finite Element Analysis. Applied Sciences (Switzerland), 2021, 11, 1905.	2.5	6
5	A Unique Model to Estimate Geometric Deviations in Drilling and Milling Due to Two Uncertainty Sources. Applied Sciences (Switzerland), 2021, 11, 1996.	2.5	3
6	Glue modelling in variation management of compliant assemblies: critical issues and possible solutions. International Journal of Computer Integrated Manufacturing, 2021, 34, 532-548.	4.6	1
7	Strain State in Metal Sheet Axisymmetric Stretching with Variable Initial Thickness: Numerical and Experimental Results. Applied Sciences (Switzerland), 2021, 11, 8265.	2.5	1
8	Effect of adherends misalignment on the strength of single-lap bonded joints. International Journal of Advanced Manufacturing Technology, 2020, 106, 817-828.	3.0	10
9	Tolerance analysis tools for fixture design: a comparison. Procedia CIRP, 2020, 92, 112-117.	1.9	7
10	Comparison between two numerical tools for geometrical deviation analysis in composite assemblies. Procedia CIRP, 2020, 92, 100-105.	1.9	3
11	Digital twin of composite assembly manufacturing process. International Journal of Production Research, 2020, 58, 5238-5252.	7.5	77
12	Influence of blank variable thickness on the material formability in hot gas sheet metal forming process. Manufacturing Letters, 2020, 24, 72-76.	2.2	10
13	Measurement of high flexibility components in composite material by touch probe and force sensing resistors. Journal of Manufacturing Processes, 2019, 45, 520-531.	5.9	33
14	Measurement of high flexibility components in composite material: critical issues and possible solutions. International Journal of Advanced Manufacturing Technology, 2019, 103, 1529-1542.	3.0	2
15	Analysis of process-induced deformation on the spring-in of carbon fiber-reinforced polymer thin laminates. Journal of Composite Materials, 2019, 53, 2901-2907.	2.4	8
16	Uncertainty in manufacturing of lightweight products in composite laminate: part 1â€"numerical approach. International Journal of Advanced Manufacturing Technology, 2019, 101, 1423-1434.	3.0	11
17	Uncertainty in manufacturing of lightweight products in composite laminateâ€"part 2: experimental validation. International Journal of Advanced Manufacturing Technology, 2019, 101, 1391-1401.	3.0	10
18	A general model to estimate hole location deviation in drilling: the contribution of three error sources. International Journal of Advanced Manufacturing Technology, 2019, 102, 545-557.	3.0	7

#	Article	IF	CITATIONS
19	Evaluation of the spring-in of CFRP thin laminates in dependence on process variation. Procedia CIRP, 2018, 75, 415-420.	1.9	3
20	Influence of multiphase forming approach on the thickness uniformity of components from superplastic PbSn60 alloy. Manufacturing Letters, 2018, 18, 16-19.	2.2	10
21	Spring-in analysis of CFRP thin laminates: numerical and experimental results. Composite Structures, 2017, 173, 17-24.	5.8	55
22	Manufacturing signature and operating conditions in a variational model for tolerance analysis of rigid assemblies. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2017, 28, 529-544.	2.1	18
23	Manufacturing signature in variational and vector-loop models for tolerance analysis of rigid parts. International Journal of Advanced Manufacturing Technology, 2017, 88, 2153-2161.	3.0	29
24	Manufacturing signature in jacobian and torsor models for tolerance analysis of rigid parts. Robotics and Computer-Integrated Manufacturing, 2017, 46, 15-24.	9.9	44
25	3D Tolerance Analysis with Manufacturing Signature and Operating Conditions. Procedia CIRP, 2016, 43, 130-135.	1.9	15
26	Concurrent tolerance design. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2016, 27, 23-36.	2.1	11
27	A New Class of Thin Composite Parts for Small Batch Productions. Advanced Composites Letters, 2014, 23, 096369351402300.	1.3	23
28	To design the cure process of thick composite parts: experimental and numerical results. Advanced Composite Materials, 2014, 23, 225-238.	1.9	40
29	Structural analysis for flexible components with freeform surfaces with the aid of a coordinate measuring machine. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226, 399-411.	2.4	4
30	Taxonomy of models for tolerance analysis in assembling. International Journal of Production Research, 2012, 50, 2014-2029.	7. 5	45
31	A review of two models for tolerance analysis of an assembly: Jacobian and torsor. International Journal of Computer Integrated Manufacturing, 2011, 24, 74-86.	4.6	62
32	Measurement of nonrigid freeform surfaces by coordinate measuring machine. International Journal of Advanced Manufacturing Technology, 2010, 51, 1055-1067.	3.0	25
33	Investigation on Stone Machining Performance Using Force and Specific Energy. Advances in Mechanical Engineering, 2009, 1, 175817.	1.6	8
34	Monitoring of Diamond Mill Wear in Time Domain during Stone Cutting Using Cutting Force Measurements. Advances in Mechanical Engineering, 2009, 1, 353504.	1.6	4
35	Robotized Filament Winding of Full Section Parts: Comparison Between Two Winding Trajectory Planning Rules. Advanced Composite Materials, 2008, 17, 1-23.	1.9	7
36	Adhesion of a protective coating on a surface of aluminium alloy treated by air cold plasma. International Journal of Adhesion and Adhesives, 2007, 27, 1-8.	2.9	26

#	Article	IF	Citations
37	Monitoring of diamond disk wear in stone cutting by means of force or acceleration sensors. International Journal of Advanced Manufacturing Technology, 2007, 35, 454-467.	3.0	24
38	Position Deviation of a Holes Pattern Due to Six-Point Locating Principle., 2007,, 201-211.		7
39	AR Models to Forecast Roving Tension Trend in a Robotized Filament Winding Cell. Materials and Manufacturing Processes, 2006, 21, 870-876.	4.7	3
40	Actual Safety Distance and Winding Tension to Manufacture Full Section Parts by Robotized Filament Winding. Journal of Engineering Materials and Technology, Transactions of the ASME, 2006, 128, 393-400.	1.4	3
41	Influence of winding speed and winding trajectory on tension in robotized filament winding of full section parts. Composites Science and Technology, 2005, 65, 1574-1581.	7.8	33
42	Estimation of the winding tension to manufacture full section parts with robotized filament winding technology. Advanced Composite Materials, 2005, 14, 305-318.	1.9	7
43	CVD diamond insert in stone cutting. Diamond and Related Materials, 2005, 14, 641-645.	3.9	19
44	Winding Trajectory and Winding Time in Robotized Filament Winding of Asymmetric Shape Parts. Journal of Composite Materials, 2005, 39, 1391-1411.	2.4	18
45	Force and specific energy in stone cutting by diamond mill. International Journal of Machine Tools and Manufacture, 2004, 44, 1189-1196.	13.4	82
46	Test protocol for micro-geometric wear of sintered diamond tools. Wear, 2004, 257, 246-256.	3.1	33
47	The estimation of the diameter error in bar turning: a comparison among three cutting force models. International Journal of Advanced Manufacturing Technology, 2003, 22, 465-474.	3.0	13
48	To characterise diamond mill wear. Wear, 2003, 255, 1414-1420.	3.1	11
49	Modular structure of a new feed-deposition head for a robotized filament winding cell. Composites Science and Technology, 2003, 63, 2255-2263.	7.8	22
50	Improving the wettability of 2024 aluminium alloy by means of cold plasma treatment. Applied Surface Science, 2003, 214, 232-242.	6.1	51
51	Wear progression of diamond mills. Diamond and Related Materials, 2003, 12, 728-732.	3.9	14
52	An analytical approach to machining deviation due to fixturing. , 2003, , 175-184.		5
53	Machining Planning for Tolerance Synthesis. Machining Science and Technology, 2003, 7, 333-347.	2.5	4
54	Tolerance-based Variations in Solid Modeling. Journal of Computing and Information Science in Engineering, 2003, 3, 345-352.	2.7	11

#	Article	IF	CITATIONS
55	Design of a New Feed-Deposition Head for Robotized Filament Winding. , 2002, , 31.		5
56	Adhesion of Polypropylene Surfaces Treated by Cold Plasma. , 2002, , .		3
57	Dimensional errors in longitudinal turning based on the unified generalized mechanics of cutting approach International Journal of Machine Tools and Manufacture, 2002, 42, 1509-1515.	13.4	32
58	Cold plasma treatment of polypropylene surface: a study on wettability and adhesion. Journal of Materials Processing Technology, 2002, 121, 373-382.	6.3	118
59	Knowledge based method for touch probe configuration in an automated inspection system. Journal of Materials Processing Technology, 1998, 76, 153-160.	6.3	21
60	Optimal design of blank thickness in superplastic AZ31 alloy to decrease forming time and product weight. International Journal of Advanced Manufacturing Technology, $0, 1$.	3.0	5
61	Kriging quick adaptive sampling for multivariate optimization. International Journal of Advanced Manufacturing Technology, 0 , 0 , 0 .	3.0	0