Aning Ayucitra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5668746/publications.pdf

Version: 2024-02-01

27 889 16 27 papers citations h-index g-index

27 27 27 27 1106

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Applied Clay Science, 2011, 53, 341-346.	5.2	134
2	Acid Green 25 removal from wastewater by organo-bentonite from Pacitan. Applied Clay Science, 2010, 48, 81-86.	5.2	88
3	Bentonite hydrochar composite for removal of ammonium from Koi fish tank. Applied Clay Science, 2016, 119, 146-154.	5.2	88
4	Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil. Applied Clay Science, 2013, 74, 121-126.	5.2	86
5	Calcium oxide from Pomacea sp. shell as a catalyst for biodiesel production. International Journal of Energy and Environmental Engineering, 2012, 3, 1.	2.5	70
6	Utilization of rarasaponin natural surfactant for organo-bentonite preparation: Application for methylene blue removal from aqueous effluent. Microporous and Mesoporous Materials, 2011, 142, 184-193.	4.4	56
7	Synthesis of biodiesel from vegetable oils wastewater sludge by in-situ subcritical methanol transesterification: Process evaluation and optimization. Biomass and Bioenergy, 2014, 69, 28-38.	5.7	37
8	Bentonites modified with anionic and cationic surfactants for bleaching of crude palm oil. Applied Clay Science, 2010, 47, 462-464.	5.2	36
9	Carbon microsphere from water hyacinth for supercapacitor electrode. Journal of the Taiwan Institute of Chemical Engineers, 2015, 47, 197-201.	5.3	34
10	Fabrication of cellulose carbamate hydrogel-dressing with rarasaponin surfactant for enhancing adsorption of silver nanoparticles and antibacterial activity. Materials Science and Engineering C, 2021, 118, 111542.	7.3	28
11	Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite). Frontiers of Chemical Science and Engineering, 2012, 6, 58-66.	4.4	27
12	Studies on the performance of bentonite and its composite as phosphate adsorbent and phosphate supplementation for plant. Journal of Hazardous Materials, 2020, 399, 123130.	12.4	22
13	Investigation on supercritical CO2 extraction of phenolic-phytochemicals from an epiphytic plant tuber (Myrmecodia pendans). Journal of CO2 Utilization, 2014, 6, 26-33.	6.8	20
14	A one-pot synthesis of biodiesel from leather tanning waste using supercritical ethanol: Process optimization. Biomass and Bioenergy, 2020, 142, 105761.	5.7	20
15	Preparation of nanocrystalline cellulose-montmorillonite composite via thermal radiation for liquid-phase adsorption. Journal of Molecular Liquids, 2017, 233, 29-37.	4.9	19
16	Understanding the Relationship between Organic Structure and Mineralization Rate of TiO2-mediated Photocatalysis. Procedia Chemistry, 2014, 9, 131-138.	0.7	17
17	Efficient conversion of leather tanning waste to biodiesel using crab shell-based catalyst: WASTE-TO-ENERGY approach. Biomass and Bioenergy, 2021, 151, 106155.	5.7	16
18	Bentonite-hydrochar composite for removal of ammonium from Koi fish tank. Applied Clay Science, 2015, 114, 467.	5.2	15

#	Article	IF	CITATION
19	FRACTIONATION OF PHENOLIC COMPOUNDS FROM KAFFIR LIME (Citrus hystrix) PEEL EXTRACT AND EVALUATION OF ANTIOXIDANT ACTIVITY. Reaktor, 2017, 17, 111.	0.3	15
20	Solubility of Azadirachtin in Supercritical Carbon Dioxide at Several Temperatures. Journal of Chemical & Chem	1.9	14
21	Iron (II) impregnated double-shelled hollow mesoporous silica as acid-base bifunctional catalyst for the conversion of low-quality oil to methyl esters. Renewable Energy, 2021, 169, 1166-1174.	8.9	13
22	Preparation of Epoxidized Fatty Acid Ethyl Ester from Tung Oil as a Bio-lubricant Base-Stock. Waste and Biomass Valorization, 2020, 11, 4145-4155.	3.4	11
23	Facile preparation of sago starch esters using full factorial design of experiment. Starch/Staerke, 2012, 64, 590-597.	2.1	9
24	Complex Formation Study of Binary and Ternary Complexes Including 2,3-Dihydroxybenzoic Acid, N-acetylcysteine and Divalent Metal Ions. Journal of Solution Chemistry, 2016, 45, 518-533.	1.2	6
25	Effect of a Nonionic Surfactant on the Pseudoternary Phase Diagram and Stability of Microemulsion. Journal of Chemical & Data, 2020, 65, 4024-4033.	1.9	4
26	Reply to the comment on "Acid Green 25 removal from wastewater by organo-bentonite from Pacitan" by R. Koswojo, R. P. Utomo, YH. Ju, A. Ayucitra, F. E. Soetaredjo, J. Sunarso, S. Ismadji [Applied Clay Science 48 (2010) 81–86]. Applied Clay Science, 2010, 50, 165-166.	5.2	2
27	Graphene oxideâ€carboxymethyl cellulose hydrogel beads for uptake and release study of doxorubicin. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2646.	1.5	2