Rene Vandenboom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5668613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Archives of Biochemistry and Biophysics, 2011, 510, 120-128.	3.0	138
2	Physiological Significance of Myosin Phosphorylation in Skeletal Muscle. Applied Physiology, Nutrition, and Metabolism, 1993, 18, 229-242.	1.7	120
3	Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation. , 2016, 7, 171-212.		55
4	Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models. Journal of Muscle Research and Cell Motility, 2013, 34, 317-332.	2.0	45
5	Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: Is resting calcium responsible?. Journal of General Physiology, 2013, 141, 297-308.	1.9	41
6	The Myofibrillar Complex and Fatigue: A Review. Applied Physiology, Nutrition, and Metabolism, 2004, 29, 330-356.	1.7	32
7	The effect of skeletal myosin light chain kinase gene ablation on the fatigability of mouse fast muscle. Journal of Muscle Research and Cell Motility, 2011, 31, 337-348.	2.0	27
8	GSK3 inhibition with low dose lithium supplementation augments murine muscle fatigue resistance and specific force production. Physiological Reports, 2020, 8, e14517.	1.7	25
9	Myosin light-chain phosphorylation and potentiation of dynamic function in mouse fast muscle. Pflugers Archiv European Journal of Physiology, 2011, 462, 349-358.	2.8	17
10	Tetanic force potentiation of mouse fast muscle is shortening speed dependent. Journal of Muscle Research and Cell Motility, 2012, 33, 359-368.	2.0	16
11	Musculoskeletal structure and function in response to the combined effect of an obesogenic diet and age in male C57BL/6J mice. Molecular Nutrition and Food Research, 2017, 61, 1700137.	3.3	15
12	The effect of work cycle frequency on the potentiation of dynamic force in mouse fast twitch skeletal muscle. Journal of Experimental Biology, 2011, 214, 3915-3923.	1.7	13
13	Myosin light chain phosphorylation is required for peak power output of mouse fast skeletal muscle in vitro. Pflugers Archiv European Journal of Physiology, 2016, 468, 2007-2016.	2.8	13
14	Juxtaposition of the changes in intracellular calcium and force during staircase potentiation at 30 and 37°C. Journal of General Physiology, 2014, 144, 561-570.	1.9	12
15	Interaction of posttetanic potentiation and the catchlike property in mouse skeletal muscle. Muscle and Nerve, 2016, 54, 308-316.	2.2	12
16	Isotonic force modulates force redevelopment rate of intact frog muscle fibres: evidence for crossâ€bridge induced thin filament activation. Journal of Physiology, 2002, 543, 555-566.	2.9	11
17	Myosin phosphorylation potentiated steady state work output without altering contractile economy of mouse fast skeletal muscles. Journal of Experimental Biology, 2018, 221, .	1.7	8
18	Posttetanic potentiation in mdx muscle. Journal of Muscle Research and Cell Motility, 2010, 31, 267-277.	2.0	7

Rene Vandenboom

#	Article	IF	CITATIONS
19	Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation. Journal of Experimental Biology, 2018, 221, .	1.7	7
20	The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase. Canadian Journal of Physiology and Pharmacology, 2015, 93, 23-32.	1.4	6
21	Shortening speed dependent force potentiation is attenuated but not eliminated in skeletal muscles without myosin phosphorylation. Journal of Muscle Research and Cell Motility, 2017, 38, 157-162.	2.0	5
22	Lack of influence of estrogen on myosin phosphorylation and post-tetanic potentiation in muscles from young adult C57BL mice. Canadian Journal of Physiology and Pharmacology, 2019, 97, 729-737.	1.4	5
23	Potentiation of force by extracellular potassium and posttetanic potentiation are additive in mouse fast-twitch muscle in vitro. Pflugers Archiv European Journal of Physiology, 2022, 474, 637-646.	2.8	5
24	Epinephrine augments posttetanic potentiation in mouse skeletal muscle with and without myosin phosphorylation. Physiological Reports, 2018, 6, e13690.	1.7	4
25	Contraction-induced enhancement of relaxation during high force contractions of mouse lumbrical muscle at 37ŰC. Journal of Experimental Biology, 2017, 220, 2870-2873.	1.7	3
26	Influence of longitudinal radiation exposure from microcomputed tomography scanning on skeletal muscle function and metabolic activity in female CD-1 mice. Physiological Reports, 2017, 5, e13338.	1.7	3
27	The effect of muscle length on post-tetanic potentiation of C57BL/6 and skMLCKâ^'/â^' mouse EDL muscles. Journal of Muscle Research and Cell Motility, 2022, 43, 99-111.	2.0	3
28	A "Wringing" Endorsement for Myosin Phosphorylation in the Heart. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 422-424.	3.4	2
29	Caffeine attenuates contraction-induced diminutions of the intracellular calcium transient in mouse lumbrical muscle ex vivo. Canadian Journal of Physiology and Pharmacology, 2019, 97, 429-435.	1.4	2
30	Subcellular location and colocalization of lipid droplet proteins, ADRP and OXPAT, in resting and stimulated rat soleus. FASEB Journal, 2011, 25, 1104.10.	0.5	0
31	Muscle contraction uncouples interactions between skeletal muscle ATGL and lipid droplet protein PLIN2. FASEB Journal, 2012, 26, 1144.17.	0.5	0