Emma R Master

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5668311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pretreatment of pulp mill secondary sludge for high-rate anaerobic conversion to biogas. Bioresource Technology, 2009, 100, 5729-5735.	4.8	70
2	A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnology for Biofuels, 2018, 11, 74.	6.2	53
3	Biochemical studies of the multicopper oxidase (small laccase) from <i><scp>S</scp>treptomyces coelicolor</i> using bioactive phytochemicals and siteâ€directed mutagenesis. Microbial Biotechnology, 2013, 6, 588-597.	2.0	50
4	Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Applied Microbiology and Biotechnology, 2012, 94, 339-351.	1.7	47
5	Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose. Applied Microbiology and Biotechnology, 2010, 86, 1903-1914.	1.7	46
6	Elucidation of the Molecular Basis for Arabinoxylan-Debranching Activity of a Thermostable Family GH62 α- <scp>l</scp> -Arabinofuranosidase from Streptomyces thermoviolaceus. Applied and Environmental Microbiology, 2014, 80, 5317-5329.	1.4	44
7	Xylo- and cello-oligosaccharide oxidation by gluco-oligosaccharide oxidase from Sarocladium strictumand variants with reduced substrate inhibition. Biotechnology for Biofuels, 2013, 6, 148.	6.2	39
8	Constitutive expression of a fungal glucuronoyl esterase in Arabidopsis reveals altered cell wall composition and structure. Plant Biotechnology Journal, 2012, 10, 1077-1087.	4.1	32
9	Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades. ChemSusChem, 2019, 12, 848-857.	3.6	32
10	Advancing lignocellulose bioconversion through direct assessment of enzyme action on insoluble substrates. Current Opinion in Biotechnology, 2014, 27, 123-133.	3.3	29
11	Substrate recognition and hydrolysis by a fungal xyloglucan-specific family 12 hydrolase. Carbohydrate Research, 2009, 344, 1175-1179.	1.1	28
12	Altered substrate specificity of the glucoâ€oligosaccharide oxidase from <i>Acremonium strictum</i> . Biotechnology and Bioengineering, 2011, 108, 2261-2269.	1.7	19
13	Sequence diversity and gene expression analyses of expansin-related proteins in the white-rot basidiomycete, Phanerochaete carnosa. Fungal Genetics and Biology, 2014, 72, 115-123.	0.9	19
14	Debranching of soluble wheat arabinoxylan dramatically enhances recalcitrant binding to cellulose. Biotechnology Letters, 2015, 37, 633-641.	1.1	18
15	Functional comparison of versatile carbohydrate esterases from families CE1, CE6 and CE16 on acetyl-4-O-methylglucuronoxylan and acetyl-galactoglucomannan. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2398-2405.	1.1	18
16	Mode of coniferous wood decay by the white rot fungus Phanerochaete carnosa as elucidated by FTIR and ToF-SIMS. Applied Microbiology and Biotechnology, 2012, 94, 1303-1311.	1.7	17
17	Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS. Applied Microbiology and Biotechnology, 2016, 100, 8013-8020.	1.7	17
18	Action of a GH115 α-glucuronidase from Amphibacillus xylanus at alkaline condition promotes release of 4- O -methylglucopyranosyluronic acid from glucuronoxylan and arabinoglucuronoxylan. Enzyme and Microbial Technology, 2017, 104, 22-28.	1.6	17

Emma R Master

#	Article	IF	CITATIONS
19	Enhancement of acetyl xylan esterase activity on cellulose acetate through fusion to a family 3 cellulose binding module. Enzyme and Microbial Technology, 2015, 79-80, 27-33.	1.6	15
20	Dynamics of the Phanerochaete carnosa transcriptome during growth on aspen and spruce. BMC Genomics, 2018, 19, 815.	1.2	15
21	Atypical lignification in eastern leatherwood (<i>Dirca palustris</i>). New Phytologist, 2020, 226, 704-713.	3.5	15
22	Enhanced Polysaccharide Binding and Activity on Linear β-Glucans through Addition of Carbohydrate-Binding Modules to Either Terminus of a Glucooligosaccharide Oxidase. PLoS ONE, 2015, 10, e0125398.	1.1	15
23	Mining bacterial genomes for novel arylesterase activity. Microbial Biotechnology, 2010, 3, 677-690.	2.0	12
24	Influence of a family 29 carbohydrate binding module on the activity of galactose oxidase from Fusarium graminearum. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 354-362.	1.1	12
25	Pichia pastoris is a Suitable Host for the Heterologous Expression of Predicted Class I and Class II Hydrophobins for Discovery, Study, and Application in Biotechnology. Microorganisms, 2018, 6, 3.	1.6	12
26	A family AA5_2 carbohydrate oxidase from Penicillium rubens displays functional overlap across the AA5 family. PLoS ONE, 2019, 14, e0216546.	1.1	10
27	PACER: a novel 3D plant cell wall model for the analysis of non-catalytic and enzymatic responses. , 2022, 15, 30.		4