Katerina Dvorakova-Hortova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5667923/publications.pdf

Version: 2024-02-01

Katerina

#	Article	IF	CITATIONS
1	Boar Sperm Cryopreservation Improvement Using Semen Extender Modification by Dextran and Pentaisomaltose. Animals, 2022, 12, 868.	1.0	6
2	Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics. International Journal of Molecular Sciences, 2022, 23, 97.	1.8	5
3	Kinetic Study of 17α-Estradiol Mechanism during Rat Sperm Capacitation. Molecules, 2022, 27, 4092.	1.7	0
4	Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metabolism, 2021, 33, 283-299.e9.	7.2	102
5	Kinetic Study of 17α-Estradiol Activity in Comparison with 17β-Estradiol and 17α-Ethynylestradiol. Catalysts, 2021, 11, 634.	1.6	2
6	Important parameters affecting quality of vitrified donor oocytes. Cryobiology, 2021, 100, 110-116.	0.3	3
7	αV Integrin Expression and Localization in Male Germ Cells. International Journal of Molecular Sciences, 2021, 22, 9525.	1.8	2
8	Genetic Association in the Maintenance of the Mitochondrial Microenvironment and Sperm Capacity. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-12.	1.9	2
9	In Silico Identification and Validation of Organic Triazole Based Ligands as Potential Inhibitory Drug Compounds of SARS-CoV-2 Main Protease. Molecules, 2021, 26, 6199.	1.7	9
10	Role of Integrins in Sperm Activation and Fertilization. International Journal of Molecular Sciences, 2021, 22, 11809.	1.8	10
11	The Role of the LINC Complex in Sperm Development and Function. International Journal of Molecular Sciences, 2020, 21, 9058.	1.8	16
12	Mitochondrial Function in Modulating Human Granulosa Cell Steroidogenesis and Female Fertility. International Journal of Molecular Sciences, 2020, 21, 3592.	1.8	73
13	Tetraspanins in mammalian reproduction: spermatozoa, oocytes and embryos. Medical Microbiology and Immunology, 2020, 209, 407-425.	2.6	10
14	Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells. Scientific Reports, 2020, 10, 4374.	1.6	9
15	Kinetic Model of the Action of 17α-Ethynylestradiol on the Capacitation of Mouse Sperm, Monitored by HPLC-MS/MS. Catalysts, 2020, 10, 124.	1.6	3
16	Gestational and pubertal exposure to low dose of di-(2-ethylhexyl) phthalate impairs sperm quality in adult mice. Reproductive Toxicology, 2020, 96, 175-184.	1.3	16
17	The Role of Taste Receptor mTAS1R3 in Chemical Communication of Gametes. International Journal of Molecular Sciences, 2020, 21, 2651.	1.8	7
18	Addressing the Compartmentalization of Specific Integrin Heterodimers in Mouse Sperm. International Journal of Molecular Sciences, 2019, 20, 1004.	1.8	13

Katerina

#	Article	IF	CITATIONS
19	Mouse <i>in vitro</i> spermatogenesis on alginate-based 3D bioprinted scaffolds. Biofabrication, 2019, 11, 035011.	3.7	48
20	Fluorescent analysis of boar sperm capacitation process in vitro. Reproductive Biology and Endocrinology, 2019, 17, 109.	1.4	9
21	Detection of CD9 and CD81 tetraspanins in bovine and porcine oocytes and embryos. International Journal of Biological Macromolecules, 2019, 123, 931-938.	3.6	10
22	Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metabolism, 2019, 29, 399-416.e10.	7.2	190
23	New Insight into Sperm Capacitation: A Novel Mechanism of 17β-Estradiol Signalling. International Journal of Molecular Sciences, 2018, 19, 4011.	1.8	10
24	CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to Fertilization. International Journal of Molecular Sciences, 2018, 19, 1236.	1.8	26
25	Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction. International Journal of Molecular Sciences, 2017, 18, 904.	1.8	52
26	Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. ELife, 2017, 6, .	2.8	205
27	Mouse Lipocalins (MUP, OBP, LCN) Are Co-expressed in Tissues Involved in Chemical Communication. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	22
28	Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction, 2016, 152, 785-793.	1.1	18
29	Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction. Scientific Reports, 2016, 6, 33714.	1.6	26
30	Kinetic analysis of decreased sperm fertilizing ability by fluorides and fluoroaluminates: a tool for analyzing the effect of environmental substances on biological events. European Biophysics Journal, 2016, 45, 71-79.	1.2	3
31	Methylation analysis of histone H4K12ac-associated promoters in sperm of healthy donors and subfertile patients. Clinical Epigenetics, 2015, 7, 31.	1.8	34
32	Toxoplasma gondii Decreases the Reproductive Fitness in Mice. PLoS ONE, 2014, 9, e96770.	1.1	39
33	Sperm-Egg Fusion: A Molecular Enigma of Mammalian Reproduction. International Journal of Molecular Sciences, 2014, 15, 10652-10668.	1.8	53
34	Progress of sperm IZUMO1 relocation during spontaneous acrosome reaction. Reproduction, 2014, 147, 231-240.	1.1	27
35	In vivo exposure to 17β-estradiol triggers premature sperm capacitation in cauda epididymis. Reproduction, 2013, 145, 255-263.	1.1	22
36	The slower the better: how sperm capacitation and acrosome reaction is modified in the presence of estrogens. Reproduction, 2012, 143, 297-307.	1.1	30

Katerina

#	Article	IF	CITATIONS
37	Genome wide identification of promoter binding sites for H4K12ac in human sperm and its relevance for early embryonic development. Epigenetics, 2012, 7, 1057-1070.	1.3	56
38	Role of complement regulatory proteins CD46, CD55 and CD59 in reproduction. Folia Zoologica, 2012, 61, 84-94.	0.9	10
39	In Vivo Exposition to 17B-Estradiol Cause Premature Capacitation of Epididymal Mouse Sperm Biology of Reproduction, 2012, 87, 433-433.	1.2	1
40	The morphology of the squirrel spermatozoon: A highly complex male gamete with a massive acrosome. Journal of Morphology, 2011, 272, 883-889.	0.6	2
41	Effect of estrogens on boar sperm capacitation in vitro. Reproductive Biology and Endocrinology, 2010, 8, 87.	1.4	45
42	CD55 and CD59 protein expression by Apodemus (field mice) sperm in the absence of CD46. Journal of Reproductive Immunology, 2009, 81, 62-73.	0.8	4
43	Absence of spermatozoal CD46 protein expression and associated rapid acrosome reaction rate in striped field mice (Apodemus agrarius). Reproductive Biology and Endocrinology, 2009, 7, 29.	1.4	21
44	The influence of fluorides on mouse sperm capacitation. Animal Reproduction Science, 2008, 108, 157-170.	0.5	37
45	Rapid sperm acrosome reaction in the absence of acrosomal CD46 expression in promiscuous field mice (Apodemus). Reproduction, 2007, 134, 739-747.	1.1	35
46	Cytoskeleton localization in the sperm head prior to fertilization. Reproduction, 2005, 130, 61-69.	1.1	71
47	Effects of cyanobacterial biomass and purified microcystins on malformations inXenopus laevis: Teratogenesis assay (FETAX). Environmental Toxicology, 2002, 17, 547-555.	2.1	29
48	Exceptional sperm cooperation in the wood mouse. Nature, 2002, 418, 174-177.	13.7	222
49	Platelets Promote Pro-Angiogenic Activity of Mesenchymal Stem Cells Via Mitochondrial Transfer and Metabolic Reprogramming. SSRN Electronic Journal, 0, , .	0.4	0