
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5667227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-temperature oxidation of acetylene by N2O at high Ar dilution conditions and in laminar premixed C2H2 + O2 + N2 flames. Combustion and Flame, 2022, 238, 111924.	2.8	12
2	PAH formation in the pyrolysis of benzene and dimethyl ether mixtures behind shock waves. Combustion and Flame, 2021, 232, 111548.	2.8	8
3	Experimental study of high temperature oxidation of dimethyl ether, n-butanol and methane. Combustion and Flame, 2020, 218, 121-133.	2.8	13
4	On the Possibility of Promoting a Detonation Condensation Wave in Acetylene with Methane Additions. Doklady Physical Chemistry, 2020, 490, 1-3.	0.2	3
5	The influence of hydrogen and methane on the growth of carbon particles during acetylene pyrolysis in a burnt-gas flow reactor. Proceedings of the Combustion Institute, 2019, 37, 1125-1132.	2.4	12
6	Features of Haloalkane Effect on the Concentration Limits and Induction Time for the Ignition of Methane–Oxygen Mixtures. Doklady Physical Chemistry, 2019, 484, 20-22.	0.2	0
7	The Role of Methyl Radical in Soot Formation. Combustion Science and Technology, 2019, 191, 2226-2242.	1.2	14
8	Direct measurements of C ₃ F ₇ I dissociation rate constants using a shock tube ARAS technique. International Journal of Chemical Kinetics, 2019, 51, 206-214.	1.0	4
9	Experimental study of reaction of n-butanol with oxygen behind shock waves using ARAS method. Physical-Chemical Kinetics in Gas Dynamics, 2019, 20, 1-15.	0.1	3
10	Influence of methane addition on soot formation in pyrolysis of acetylene. Combustion and Flame, 2018, 193, 83-91.	2.8	17
11	Direct measurements of rate coefficients for thermal decomposition of CF ₃ I using shock—tube ARAS technique. Journal Physics D: Applied Physics, 2018, 51, 184004.	1.3	11
12	On Relative Effectiveness of Halogenated Hydrocarbons for Suppression of Hydrogen-Oxygen Mixture Autoignition. Combustion Science and Technology, 2018, 190, 550-555.	1.2	10
13	Soot formation in shock-wave-induced pyrolysis of acetylene and benzene with H2, O2, and CH4 addition. Combustion and Flame, 2018, 198, 158-168.	2.8	24
14	Experimental study of chemiluminescence in UV and VIS range at hydrogen-oxygen mixtures ignition. MATEC Web of Conferences, 2018, 209, 00012.	0.1	1
15	The influence of iodinated fire suppressants on shock-induced ignition of acetylene– and methane–oxygen mixtures. Combustion Science and Technology, 2018, 190, 2061-2065.	1.2	1
16	The opposite influences of flame suppressants on the ignition of combustible mixtures behind shock waves. Combustion and Flame, 2017, 176, 592-598.	2.8	15
17	Ignition delays in methane–oxygen mixture in the presence of small amount of iron or carbon nanoparticles. Journal of Physics: Conference Series, 2016, 774, 012085.	0.3	1
18	Synthesis of binary iron–carbon nanoparticles by UV laser photolysis of Fe(CO)5with various hydrocarbons. Materials Research Express, 2016, 3, 105041.	0.8	10

#	Article	IF	CITATIONS
19	Promoting effect of halogen- and phosphorus-containing flame retardants on the autoignition of a methane〓oxygen mixture. Combustion, Explosion and Shock Waves, 2016, 52, 375-385.	0.3	8
20	Binary iron–carbon nanoparticle synthesis in photolysis of Fe(CO) ₅ with methane and acetylene. Journal of Physics: Conference Series, 2016, 774, 012127.	0.3	4
21	Anomalous behavior of optical density of iron nanoparticles heated behind shock waves. High Temperature, 2016, 54, 902-904.	0.1	7
22	Opposite influence of haloalkanes on combustion and pyrolysis of acetylene. Journal of Physics: Conference Series, 2015, 653, 012058.	0.3	0
23	Synthesis of metal-carbon nanoparticles in pulsed UV-photolysis of Fe(CO)5-CCl4 mixtures at room temperature. Technical Physics Letters, 2015, 41, 547-550.	0.2	10
24	Kinetics of Mo atom formation and consumption in UV multiphoton dissociation of Mo(CO) ₆ at room temperature. Physica Scripta, 2015, 90, 128006.	1.2	1
25	Molybdenum atoms yield in pulse ultraviolet laser photolysis of Mo(CO)6. Journal of Physics: Conference Series, 2015, 653, 012029.	0.3	1
26	Promotion of methane ignition by the fire suppressants CCl4 and CF3H. Combustion and Flame, 2015, 162, 2746-2747.	2.8	7
27	Sizing of Mo nanoparticles synthesised by Kr–F laser pulse photo-dissociation of Mo(CO)6. Applied Physics A: Materials Science and Processing, 2015, 119, 615-622.	1.1	14
28	Energy gain of the detonation pyrolysis of acetylene. High Temperature, 2015, 53, 363-369.	0.1	10
29	Experimental study of temperature influence on carbon particle formation in shock wave pyrolysis of benzene and benzene–ethanol mixtures. Combustion and Flame, 2015, 162, 207-215.	2.8	20
30	Experimental study of soot size decrease with pyrolysis temperature rise. Proceedings of the Combustion Institute, 2015, 35, 1753-1760.	2.4	4
31	Influence of \$\$ext{ CF }_{3}ext{ H }\$\$ CF 3 H and \$\$ext{ CCI }_{4}\$\$ CCI 4 additives on acetylene detonation. Shock Waves, 2014, 24, 231-237.	1.0	10
32	Influence of quantum effects on the initiation of ignition and detonation. Journal of Experimental and Theoretical Physics, 2014, 118, 831-843.	0.2	6
33	Iron nanoparticle growth induced by Kr–F excimer laser photolysis of Fe(CO)5. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	13
34	On the origin of nonequilibrium radiation from iodine molecules at the shock wave front. Technical Physics, 2013, 58, 647-652.	0.2	4
35	Experimental study of carbon and iron nanoparticle vaporisation under pulse laser heating. Applied Physics B: Lasers and Optics, 2013, 112, 421-432.	1.1	21
36	A new model for carbon nanoparticle formation in the pyrolysis process behind shock waves. High Temperature, 2013, 51, 673-680.	0.1	9

#	Article	IF	CITATIONS
37	Analysis of the production and clusterization of iron atoms under pulsed laser photolysis of Fe(CO)5. Technical Physics, 2013, 58, 1337-1345.	0.2	8
38	Experimental investigation and modeling of the kinetics of CCl4 pyrolysis behind reflected shock waves using high-repetition-rate time-of-flight mass spectrometry. Physical Chemistry Chemical Physics, 2013, 15, 2821.	1.3	10
39	Synthesis of Small Carbon Nanoparticles in a Microwave Plasma Flow Reactor. Zeitschrift Fur Physikalische Chemie, 2013, 227, 357-370.	1.4	5
40	The effect of chlorine atoms on the charging kinetics of carbon nanoparticles forming in shock-heated plasma. High Temperature, 2012, 50, 687-693.	0.1	3
41	Experimental study of molecular hydrogen influence on carbon particle growth in acetylene pyrolysis behind shock waves. Combustion and Flame, 2012, 159, 3607-3615.	2.8	26
42	Quantum Phenomena in Ignition and Detonation at Elevated Density. Physical Review Letters, 2012, 109, 183201.	2.9	15
43	On the effect of molecular and hydrocarbon-bonded hydrogen on carbon particle formation in C3O2 pyrolysis behind shock waves. Combustion and Flame, 2012, 159, 932-939.	2.8	4
44	Formation of carbon nanoparticles from the gas phase in shock wave pyrolysis processes. Progress in Energy and Combustion Science, 2012, 38, 1-40.	15.8	49
45	Investigation of the kinetics of carbon nanoparticle charging in shock-heated plasma. High Temperature, 2011, 49, 349-355.	0.1	4
46	Size measurement of carbon and iron nanoparticles by laser induced incadescence. High Temperature, 2011, 49, 667-673.	0.1	28
47	Quantum effects in the kinetics of the initiation of detonation condensation waves. JETP Letters, 2011, 94, 530-534.	0.4	7
48	Size dependence of complex refractive index function of growing nanoparticles. Applied Physics B: Lasers and Optics, 2011, 104, 285-295.	1.1	63
49	Carbon condensation wave in C3O2 and C2H2 initiated by a shock wave. Proceedings of the Combustion Institute, 2011, 33, 525-532.	2.4	19
50	Formation of Condensed Particles in Premixed Flames Catalyzed by Metal Carbonyls. Zeitschrift Fur Physikalische Chemie, 2010, 224, 715-727.	1.4	1
51	The nature of nonequilibrium phenomena in the shock-wave front. Doklady Physics, 2010, 55, 207-210.	0.2	4
52	Detonation wave initiated by explosive condensation of supersaturated carbon vapor. Shock Waves, 2010, 20, 491-498.	1.0	1
53	Formation of a detonation wave in the process of chemical condensation of carbon nanoparticles. Journal of Engineering Physics and Thermophysics, 2010, 83, 1197-1209.	0.2	6
54	Formation of detonation wave upon condensation of supersaturated carbon vapor. High Temperature, 2010. 48, 823-829.	0.1	4

4

#	Article	IF	CITATIONS
55	Formation of a detonation wave in the thermal decomposition of acetylene. JETP Letters, 2010, 92, 97-101.	0.4	14
56	Experimental study of carbon particle charging at shock-wave pyrolysis of C3O2. Proceedings of the Combustion Institute, 2009, 32, 721-728.	2.4	5
57	Photosynthesis of nanoparticles. Nanotechnologies in Russia, 2009, 4, 319-330.	0.7	6
58	Detonation wave driven by condensation of supersaturated carbon vapor. Physical Review E, 2009, 79, 035303.	0.8	14
59	Nonequilibrium processes at the shock wave front in inert gases with a small amount of Fe(CO)5 impurity. Technical Physics, 2008, 53, 1022-1028.	0.2	3
60	Formation of a detonation-like condensation wave. JETP Letters, 2008, 87, 470-473.	0.4	9
61	Nonequilibrium radiation and ionization during formation of iron clusters in shock waves. Journal Physics D: Applied Physics, 2008, 41, 135201.	1.3	6
62	Influence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature. Journal Physics D: Applied Physics, 2008, 41, 055203.	1.3	42
63	Nonequilibrium Processes During Fe(CO)5 Pyrolysis in a Shock Wave. Zeitschrift Fur Physikalische Chemie, 2008, 222, 103-115.	1.4	1
64	Heat release of carbon particle formation from hydrogen-free precursors behind shock waves. Proceedings of the Combustion Institute, 2007, 31, 649-656.	2.4	26
65	Formation of carbon nanoparticles by the condensation of supersaturated atomic vapor obtained by the laser photolysis of C3O2. Kinetics and Catalysis, 2007, 48, 194-203.	0.3	11
66	<title>Interaction of intense femtosecond laser pulses with iron clusters formed by
photo-dissociation of Fe(CO)<formula><inf><roman>5</roman></inf></formula></title> . , 2006, , .		2
67	TR-LII for sizing of carbon particles forming at room temperature. Applied Physics B: Lasers and Optics, 2006, 83, 449-454.	1.1	30
68	Nanoparticle formation from supersaturated carbon vapour generated by laser photolysis of carbon suboxide. Journal Physics D: Applied Physics, 2006, 39, 4359-4365.	1.3	6
69	Time and temperature dependence of carbon particle growth in various shock wave pyrolysis processes. Proceedings of the Combustion Institute, 2005, 30, 1433-1440.	2.4	29
70	Formation of Iron-Carbon Nanoparticles behind Shock Waves. Kinetics and Catalysis, 2005, 46, 309-318.	0.3	17
71	Title is missing!. Kinetics and Catalysis, 2003, 44, 463-470.	0.3	6
72	Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII). Combustion and Flame, 2003, 135, 77-85.	2.8	17

#	Article	IF	CITATIONS
73	To the Temperature Dependence of Carbon Particle Formation in Shock Wave Pyrolysis Processes. Zeitschrift Fur Physikalische Chemie, 2003, 217, 893-910.	1.4	13
74	Formation of Nanoparticles by Photolysis from Metal and Carbon Bearing Molecules. Zeitschrift Fur Physikalische Chemie, 2003, 217, 1361-1368.	1.4	12
75	Ignition of Multicomponent Hydrocarbon/Air Mixtures behind Shock Waves. High Temperature, 2002, 40, 379-386.	0.1	17
76	Overequilibrium Excitation of C2Radicals in Thermal Decomposition of C3O2. Doklady Chemistry, 2001, 379, 181-186.	0.2	3
77	Kinetics of Carbon Cluster Formation in the Course of C3O2Pyrolysis. Kinetics and Catalysis, 2001, 42, 583-593.	0.3	17
78	Numerical simulation and experimental observation of magnetic flux distribution in high-temperature superconductors. Superconductor Science and Technology, 2001, 14, 690-694.	1.8	6
79	Carbon particle formation and decay in two-step pyrolysis of carbon suboxide behind shock waves. Proceedings of the Combustion Institute, 2000, 28, 2515-2522.	2.4	19
80	Recombination radiation from a nonequilibrium jet of dissociated carbon dioxide. Journal of Applied Mechanics and Technical Physics, 1994, 34, 752-760.	0.1	3
81	Nonequilibrium radiation from the CO2 band (1 B 2 ?X 1? g /+) in shock-heated flows. Shock Waves, 1993, 3, 11-17.	1.0	11
82	Generalized empirical laws of starting discontinuity dynamics associated with the startup of underexpanded jets. Journal of Applied Mechanics and Technical Physics, 1992, 32, 665-669.	0.1	2
83	An experimental study into the nonsteady radiation of a jet consisting of an impact-heating gas containing CO2. Journal of Applied Mechanics and Technical Physics, 1991, 31, 533-540.	0.1	2
84	Density distribution in pulsed gas jets effusing into a rarefied space. Journal of Applied Mechanics and Technical Physics, 1991, 31, 914-918.	0.1	0
85	Mechanism of vibronic exchange between sodium and vibrationally nonequilibrium nitrogen. Combustion, Explosion and Shock Waves, 1982, 17, 443-445.	0.3	0
86	Improving accuracy when machining stepped components on multiwheel grinders. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 1981, 17, 312-313.	0.1	0
87	Nonstationary processes in starting strongly underexpanded jets. Journal of Applied Mechanics and Technical Physics, 1978, 19, 27-31.	0.1	7
88	Sodium excitation in non-equilibrium conditions behind shock waves in nitrogen. Chemical Physics Letters, 1977, 45, 351-355.	1.2	12
89	Formation of a jet of gas outflowing into evacuated space. Journal of Applied Mechanics and Technical Physics, 1976, 16, 196-200.	0.1	2
90	Detonation wave of condensation. Physics-Uspekhi, 0, , .	0.8	0

6

#	Article	IF	CITATIONS
91	Influence of chemically active additives on kinetics of acetylene self-decomposition and following soot formation. Combustion Science and Technology, 0, , 1-27.	1.2	1