
MikoÅ,aj Owsianiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5666677/publications.pdf Version: 2024-02-01

MIKOÅ ALOWSIANIAK

#	Article	IF	CITATIONS
1	Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: Effect of the type of blend and the addition of biosurfactants. Bioresource Technology, 2009, 100, 1497-1500.	4.8	162
2	Development of a life-cycle impact assessment methodology linked to the Planetary Boundaries framework. Ecological Indicators, 2018, 88, 250-262.	2.6	124
3	Review of life-cycle based methods for absolute environmental sustainability assessment and their applications. Environmental Research Letters, 2020, 15, 083001.	2.2	121
4	How to bring absolute sustainability into decision-making: An industry case study using a Planetary Boundary-based methodology. Science of the Total Environment, 2018, 634, 1406-1416.	3.9	109
5	IMPACT 2002+, ReCiPe 2008 and ILCD's recommended practice for characterization modelling in life cycle impact assessment: a case study-based comparison. International Journal of Life Cycle Assessment, 2014, 19, 1007-1021.	2.2	107
6	Downscaling the planetary boundaries in absolute environmental sustainability assessments – A review. Journal of Cleaner Production, 2020, 276, 123287.	4.6	87
7	LCâ€IMPACT: A regionalized life cycle damage assessment method. Journal of Industrial Ecology, 2020, 24, 1201-1219.	2.8	80
8	Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity. Applied Microbiology and Biotechnology, 2009, 84, 545-553.	1.7	79
9	Challenges in implementing a Planetary Boundaries based Life-Cycle Impact Assessment methodology. Journal of Cleaner Production, 2016, 139, 450-459.	4.6	70
10	Strengthening the Link between Life Cycle Assessment and Indicators for Absolute Sustainability To Support Development within Planetary Boundaries. Environmental Science & Technology, 2015, 49, 6370-6371.	4.6	67
11	Environmental Performance of Hydrothermal Carbonization of Four Wet Biomass Waste Streams at Industry-Relevant Scales. ACS Sustainable Chemistry and Engineering, 2016, 4, 6783-6791.	3.2	65
12	Toward harmonizing ecotoxicity characterization in life cycle impact assessment. Environmental Toxicology and Chemistry, 2018, 37, 2955-2971.	2.2	62
13	Biodegradation of diesel/biodiesel blends in saturated sand microcosms. Fuel, 2014, 116, 321-327.	3.4	58
14	Relative quantitative PCR to assess bacterial community dynamics during biodegradation of diesel and biodiesel fuels under various aeration conditions. Bioresource Technology, 2011, 102, 4347-4352.	4.8	54
15	Making hydrochar suitable for agricultural soil: A thermal treatment to remove organic phytotoxic compounds. Journal of Environmental Chemical Engineering, 2018, 6, 7029-7034.	3.3	51
16	Addressing Geographic Variability in the Comparative Toxicity Potential of Copper and Nickel in Soils. Environmental Science & Technology, 2013, 47, 3241-3250.	4.6	49
17	Biodegradation in a Partially Saturated Sand Matrix: Compounding Effects of Water Content, Bacterial Spatial Distribution, and Motility. Environmental Science & Technology, 2010, 44, 2386-2392.	4.6	48
18	Potentials and limitations of footprints for gauging environmental sustainability. Current Opinion in Environmental Sustainability, 2017, 25, 20-27.	3.1	44

ΜικοÅ,aj Owsianiak

#	Article	IF	CITATIONS
19	Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Science of the Total Environment, 2019, 671, 948-958.	3.9	43
20	Interactions between rhamnolipid biosurfactants and toxic chlorinated phenols enhance biodegradation of a model hydrocarbon-rich effluent. International Biodeterioration and Biodegradation, 2011, 65, 605-611.	1.9	41
21	Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source. Environmental Pollution, 2015, 206, 400-410.	3.7	39
22	Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation. Ecotoxicology and Environmental Safety, 2018, 147, 157-164.	2.9	37
23	Comparative life cycle assessment of coffee jar lids made from biocomposites containing poly(lactic) Tj ETQq1 1	0.784314	∙rg₿T /Overlo
24	The role of life cycle engineering (LCE) in meeting the sustainable development goals – report from a consultation of LCE experts. Journal of Cleaner Production, 2019, 230, 378-382.	4.6	33
25	An (Eco)Toxicity Life Cycle Impact Assessment Framework for Per- And Polyfluoroalkyl Substances. Environmental Science & Technology, 2020, 54, 6224-6234.	4.6	33
26	Improving environmental performance of post-harvest supply chains of fruits and vegetables in Europe: Potential contribution from ultrasonic humidification. Journal of Cleaner Production, 2018, 182, 16-26.	4.6	31
27	LCA History. , 2018, , 17-30.		31
28	Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste. Resources, Conservation and Recycling, 2019, 147, 111-118.	5.3	31
29	Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil. New Biotechnology, 2016, 33, 852-859.	2.4	30
30	Life cycle assessment in corporate sustainability reporting: Global, regional, sectoral, and companyâ€level trends. Business Strategy and the Environment, 2018, 27, 1751-1764.	8.5	30
31	Environmental and economic impacts of biochar production and agricultural use in six developing and middle-income countries. Science of the Total Environment, 2021, 755, 142455.	3.9	30
32	Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?. Energy and Environmental Science, 2015, 8, 2435-2447.	15.6	28
33	Phenol and n-alkanes (C12 and C16) utilization: influence on yeast cell surface hydrophobicity. World Journal of Microbiology and Biotechnology, 2008, 24, 1943-1949.	1.7	27
34	Assessing Environmental Sustainability of Remediation Technologies in a Life Cycle Perspective is Not So Easy. Environmental Science & Technology, 2013, 47, 1182-1183.	4.6	27
35	Main Characteristics of LCA. , 2018, , 9-16.		22
36	Inclusion of multiple climate tipping as a new impact category in life cycle assessment of polyhydroxyalkanoate (PHA)-based plastics. Science of the Total Environment, 2021, 788, 147544.	3.9	22

ΜικοÅ,aj Owsianiak

#	Article	IF	CITATIONS
37	Evaluation of Bioaugmentation with Entrapped Degrading Cells as a Soil Remediation Technology. Environmental Science & Technology, 2010, 44, 7622-7627.	4.6	21
38	Scope Definition. , 2018, , 75-116.		21
39	Mapping and characterization of LCA networks. International Journal of Life Cycle Assessment, 2013, 18, 812-827.	2.2	19
40	Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators. GCB Bioenergy, 2018, 10, 230-245.	2.5	18
41	Persistence of selected ammonium- and phosphonium-based ionic liquids in urban park soil microcosms. International Biodeterioration and Biodegradation, 2015, 103, 91-96.	1.9	17
42	Life Cycle Inventory Analysis. , 2018, , 117-165.		17
43	Influence of spatial differentiation in impact assessment for LCA-based decision support: Implementation of biochar technology in Indonesia. Journal of Cleaner Production, 2018, 200, 259-268.	4.6	17
44	Limitations of experiments performed in artificially made OECD standard soils for predicting cadmium, lead and zinc toxicity towards organisms living in natural soils. Journal of Environmental Management, 2017, 198, 32-40.	3.8	16
45	Elucidating differences in metal absorption efficiencies between terrestrial soft-bodied and aquatic species. Chemosphere, 2014, 112, 487-495.	4.2	15
46	Influence of metal speciation on soil ecotoxicity impacts in life cycle assessment. Journal of Environmental Management, 2020, 266, 110611.	3.8	13
47	Performance of second-generation microbial protein used as aquaculture feed in relation to planetary boundaries. Resources, Conservation and Recycling, 2022, 180, 106158.	5.3	13
48	Quantifying the Mineralization of ¹³ C-Labeled Cations and Anions Reveals Differences in Microbial Biodegradation of Herbicidal Ionic Liquids between Water and Soil. ACS Sustainable Chemistry and Engineering, 2020, 8, 3412-3426.	3.2	11
49	Adsorption of Sodium Dodecylbenzenesulphonate (SDBS) on Candida maltosa EH 15 Strain: Influence on Cell Surface Hydrophobicity and n-alkanes Biodegradation. Water, Air, and Soil Pollution, 2009, 196, 345-353.	1.1	10
50	Human health no-effect levels of TiO2 nanoparticles as a function of their primary size. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	10
51	Setting Better-Informed Climate Targets for New Zealand: The Influence of Value and Modeling Choices. Environmental Science & Technology, 2020, 54, 4515-4527.	4.6	9
52	Biodegradation of diesel fuel by a microbial consortium in the presence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues. Biodegradation, 2009, 20, 661-671.	1.5	8
53	Identification of dissipative emissions for improved assessment of metal resources in life cycle assessment. Journal of Industrial Ecology, 0, , .	2.8	8

ΜικοÅ,aj Owsianiak

#	Article	IF	CITATIONS
55	Terrestrial Ecotoxic Impacts Stemming from Emissions of Cd, Cu, Ni, Pb and Zn from Manure: A Spatially Differentiated Assessment in Europe. Sustainability, 2018, 10, 4094.	1.6	6
56	Metal residues in macroalgae feedstock and implications for microbial fermentation. Biomass and Bioenergy, 2020, 142, 105812.	2.9	6
57	Goal Definition. , 2018, , 67-74.		5
58	Life cycle inventory data for banana-fiber-based biocomposite lids. Data in Brief, 2020, 30, 105605.	0.5	5
59	Multiple Climate Tipping Points Metrics for Improved Sustainability Assessment of Products and Services. Environmental Science & amp; Technology, 2021, 55, 2800-2810.	4.6	5
60	Assessing the sustainability implications of research projects against the 17 UN sustainable development goals. Procedia CIRP, 2020, 90, 148-153.	1.0	3
61	LCA of Soil and Groundwater Remediation. , 2018, , 927-959.		2
62	Illustrative Case Study: Life Cycle Assessment of Four Window Alternatives. , 2018, , 1059-1146.		2
63	Defining and Mapping LCA Networks: Initial Results. , 2012, , 137-141.		1
64	Structural and functional robustness of an environmental bacterial community degrading diesel fuel. New Biotechnology, 2016, 33, S128.	2.4	0