Magdalena Urbaniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/56666/publications.pdf

Version: 2024-02-01

623734 51 728 14 citations h-index papers

23 g-index 52 52 52 707 docs citations times ranked citing authors all docs

642732

#	Article	IF	CITATIONS
1	The effects of syringic acid on the properties of MCPA-contaminated soil and the growth of two cucurbit species. International Journal of Phytoremediation, 2022, 24, 205-214.	3.1	3
2	The evaluation of Hudson River sediment as a growth substrate – Microbial activity, PCB-degradation potential and risk assessment. Science of the Total Environment, 2022, 836, 155561.	8.0	2
3	The Effect of Syringic Acid and Phenoxy Herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) on Soil, Rhizosphere, and Plant Endosphere Microbiome. Frontiers in Plant Science, 2022, 13, .	3.6	2
4	Concentration of dioxin and screening level ecotoxicity of pore water from bottom sediments in relation to organic carbon contents. Ecotoxicology, 2021, 30, 57-66.	2.4	2
5	Application of Ecohydrology Approach for Mitigation of Freshwater Ecosystems Contamination. Water (Switzerland), 2021, 13, 682.	2.7	0
6	Ecohydrology and adaptation to global change. Ecohydrology and Hydrobiology, 2021, 21, 393-410.	2.3	13
7	Effects of soil amendment with PCB-contaminated sediment on the growth of two cucurbit species. Environmental Science and Pollution Research, 2020, 27, 8872-8884.	5.3	16
8	Evaluation of ecotoxicological and chemical properties of soil amended with Hudson River (New) Tj ETQq0 0 0 rg	gBT_/Qverlo	ock 10 Tf 50 4
9	Biodegradation Potential and Ecotoxicity Assessment in Soil Extracts Amended with Phenoxy Acid Herbicide (2,4-D) and a Structurally-Similar Plant Secondary Metabolite (Ferulic Acid). Bulletin of Environmental Contamination and Toxicology, 2020, 104, 200-205.	2.7	4
10	An assessment of the concentrations of PCDDs/Fs in contaminated bottom sediments and their sources and ecological risk. Journal of Soils and Sediments, 2020, 20, 2588-2597.	3.0	16
11	Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems. Water (Switzerland), 2020, 12, 2962.	2.7	6
12	Effects of amendments of PCB-containing Hudson River sediment on soil quality and biochemical and growth response of cucumber (⟨i⟩Cucumis sativus⟨ i⟩L. cv â€~Wisconsin SMR 58'). International Journal of Phytoremediation, 2020, 22, 1224-1232.	3.1	8
13	Utilization of PCB-contaminated Hudson River sediment by thermal processing and phytoremediation. Science of the Total Environment, 2020, 738, 139841.	8.0	10
14	Precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans in Arctic and Antarctic marine sediments: Environmental concern in the face of climate change. Chemosphere, 2020, 260, 127605.	8.2	12
15	Removal and Ecotoxicity of 2,4-D and MCPA in Microbial Cultures Enriched with Structurally-Similar Plant Secondary Metabolites. Water (Switzerland), 2019, 11, 1451.	2.7	10
16	The Influence of Bottom Sediments and Inoculation with Rhizobacterial Inoculants on the Physiological State of Plants Used in Urban Plantings. Water (Switzerland), 2019, 11, 1792.	2.7	6
17	An ecohydrological approach to the river contamination by PCDDs, PCDFs and dl-PCBs – concentrations, distribution and removal using phytoremediation techniques. Scientific Reports, 2019, 9, 19310.	3.3	10
18	Impact of rhizobacterial inoculants on plant growth and enzyme activities in soil treated with contaminated bottom sediments. International Journal of Phytoremediation, 2019, 21, 325-333.	3.1	11

#	Article	IF	CITATIONS
19	AN ASSESSMENT OF BOTTOM SEDIMENT AS A SOURCE OF PLANT NUTRIENTS AND AN AGENT FOR IMPROVING SOIL PROPERTIES. Environmental Engineering and Management Journal, 2019, 18, 1647-1656.	0.6	20
20	The Application of Different Biological Remediation Strategies to PCDDs/PCDFs Contaminated Urban Sediments. Water (Switzerland), 2019, 11, 1962.	2.7	4
21	The response of cucumber plants (<i>Cucumis sativus</i> L) to the application of PCB-contaminated sewage sludge and urban sediment. PeerJ, 2019, 7, e6743.	2.0	13
22	The stimulating role of syringic acid, a plant secondary metabolite, in the microbial degradation of structurally-related herbicide, MCPA. PeerJ, 2019, 7, e6745.	2.0	8
23	The biochemical response of willow plants (Salix viminalis L.) to the use of sewage sludge from various sizes of wastewater treatment plant. Science of the Total Environment, 2018, 615, 882-894.	8.0	31
24	The variability of PCDD/F concentrations in the effluent of wastewater treatment plants with regard to their hydrological environment. Environmental Monitoring and Assessment, 2017, 189, 90.	2.7	14
25	The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation. Science of the Total Environment, 2017, 586, 66-75.	8.0	84
26	The use of a hybrid Sequential Biofiltration System for the improvement of nutrient removal and PCB control in municipal wastewater. Scientific Reports, 2017, 7, 5477.	3.3	20
27	The influence of the Cucurbitaceae on mitigating the phytotoxicity and PCDD/PCDF content of soil amended with sewage sludge. International Journal of Phytoremediation, 2017, 19, 207-213.	3.1	16
28	Effects of Stormwater and Snowmelt Runoff on ELISA-EQ Concentrations of PCDD/PCDF and Triclosan in an Urban River. PLoS ONE, 2016, 11, e0151756.	2.5	4
29	The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application. PLoS ONE, 2016, 11, e0157782.	2.5	13
30	Potential for Phytoremediation of PCDD/PCDF-Contaminated Sludge and Sediments Using Cucurbitaceae Plants: A Pilot Study. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 401-406.	2.7	22
31	Leaching of PCBs and Nutrients from Soil Fertilized with Municipal Sewage Sludge. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 249-254.	2.7	16
32	Incidence of microcystinâ€producing cyanobacteria in Lake Tana, the largest waterbody in Ethiopia. African Journal of Ecology, 2015, 53, 54-63.	0.9	15
33	The Role of Hydrology in the Polychlorinated Dibenzo- $\langle i \rangle p \langle j \rangle$ -dioxin and Dibenzofuran Distributions in a Lowland River. Journal of Environmental Quality, 2015, 44, 1171-1182.	2.0	8
34	Concentrations and Toxic Equivalency of Polychlorinated Biphenyls in Polish Wastewater Treatment Plant Effluents. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 530-535.	2.7	9
35	Levels and sources of PCDDs, PCDFs and dl-PCBs in the water ecosystems of central Poland $\hat{a}\in$ " A mini review. International Journal of Occupational Medicine and Environmental Health, 2014, 27, 902-918.	1.3	7
36	Spatial distribution and reduction of PCDD/PCDF Toxic Equivalents along three shallow lowland reservoirs. Environmental Science and Pollution Research, 2014, 21, 4441-4452.	5.3	21

3

#	Article	IF	Citations
37	Point sources of nutrient pollution in the lowland river catchment in the context of the Baltic Sea eutrophication. Ecological Engineering, 2014, 70, 337-348.	3.6	65
38	The effect of PCB-contaminated sewage sludge and sediment on metabolism of cucumber plants (Cucumis sativus L.). Ecohydrology and Hydrobiology, 2014, 14, 75-82.	2.3	36
39	The role of riparian willows in phosphorus accumulation and PCB control for lotic water quality improvement. Ecological Engineering, 2014, 70, 1-10.	3.6	28
40	The impact of point sources of pollution on the transport of micropollutants along the river continuum. Hydrology Research, 2014, 45, 391-410.	2.7	12
41	IMPACT OF SLUDGE ORIGINATED PCDDS/PCDFS ON SOIL CONTAMINATION AND SALIX SP. METABOLISM. , 2014, , .		3
42	Spatial distribution of PCDDs, PCDFs and dl-PCBs along the cascade of urban reservoirs. Hydrology Research, 2013, 44, 614-630.	2.7	13
43	The role of a lowland reservoir in the transport of micropollutants, nutrients and the suspended particulate matter along the river continuum. Hydrology Research, 2012, 43, 400-411.	2.7	34
44	Efficiency analysis of two sequential biofiltration systems in Poland and Ethiopia - the pilot study. Ecohydrology and Hydrobiology, 2012, 12, 271-285.	2.3	12
45	Hydrological and environmental conditions as key drivers for spatial and seasonal changes in PCDD/PCDF concentrations, transport and deposition along urban cascade reservoirs. Chemosphere, 2012, 88, 1358-1367.	8.2	18
46	Ecohydrology for a sustainable future in Africa – the cases of Ethiopia, Kenya and Tanzania. Ecohydrology and Hydrobiology, 2011, 11, 223-230.	2.3	5
47	Ecohydrological systemic solutions for reduction of siltation, eutophication and dioxin-induced toxicity. The pilot study of the Asella BioFarm Park lake, Ethiopia. Ecohydrology and Hydrobiology, 2010, 10, 363-368.	2.3	5
48	Ecohydrology for Ethiopia â€" regulation of water biota interactions for sustainable water resources and ecosystem services for societies. Ecohydrology and Hydrobiology, 2010, 10, 101-106.	2.3	8
49	Biodegradation of PCDDs/PCDFs and PCBs. , 0, , .		16
50	PCDDs/PCDFs and PCBs in Wastewater and Sewage Sludge. , 0, , .		3
51	Biological Remediation of Phenoxy Herbicide-Contaminated Environments. , 0, , .		2